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Phase space control and consequences for cooling by using a laser-undulator beat wave
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We present a general method to control the phase space structure of charged particle beams by both
Hamiltonian and non-Hamiltonian manipulations by employing multiple optical pulses. In particular, we focus
on beam cooling as an example of the method. In order to rapidly cool a bunched beam of charged particles,
one needs to introduce non-Hamiltonian manipulation of the internal structure of the phase space of the bunch.
A spatially dependent force, which cancels the velocity moment fluctuations arising from the irregularity and
granularity of the phase space, is shown to be effective in cooling the bunch. We introduce a method of cooling
by creating a ponderomotive force due to a beat between a laser and an undulator that are appropriately
adjusted turn by turn through feedback. If a high enough resolution feedback system can be achieved, this
results in a rapid reduction of the longitudinal emittance of the bunch with a corresponding increase in the
phase space of the scattered laser light. In this process we find that when the structure of the laser input is
matched well with that of the beam, a large amount of entropy transfer without much energy transfer takes
place~‘‘entropy resonance’’!, while when it is ill matched, no such entropy resonance takes place. We measure
the correlation dimension and higher entropy of the scattered laser light. It is found that both quantities are
useful for determining the amount of cooling. By combining an appropriately timed Hamiltonian longitudinal
beam stretching with the present cooling procedure, we can continue the cooling. Numerical simulation is
carried out to demonstrate this method.@S1063-651X~97!08905-8#

PACS number~s!: 29.27.Eg, 52.65.2y, 42.50.Fx
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I. INTRODUCTION

In charged particle beam acceleration the primary g
has been the increase of energy itself. This is obvious, as
spatial resolution of matterDr is related to the energy of th
beamE by Dr;\c/E. However, in addition to this, the
improvement of beam quality, such as emittance reduct
is also important. The control of the phase space structur
the beam is thus the general problem we would like to
dress here. Phase space control includes cooling~phase space
volume reduction!, stochastic beam stacking@1#, stochastic
beam extraction@2#, suppression of instabilities from mu
tiple beam-beam interactions or head-tail effects@3#, and
beam phase space tailoring for advanced light sources@4#.
For this paper we concentrate on cooling of charge part
beams as an example of an application of this method.
emittancee of the beam is the phase space volume~or area!
properly normalized. Thus its logarithm is related to the e
tropy of the beam. Emittance reduction is the problem
cooling. Cooling is not just a question of increasing the be
energy, but that of reducing the beam entropy.

Let us pose a question ‘‘Can one cool a beam wh
obeys Hamiltonian dynamics, since electromagnetic fie
can be written in Hamiltonian form?’’ Electric fields~and
magnetic fields! are functions of space only and not that
momentum. Upon application of an electric field on t
beam, the area in phase space is unchanged. This illust
the first kind of difficulty associated with cooling. Liouville’
theorem states that aN-particle Hamiltonian system pre
serves phase space volume so that any external Hamilto
electric or magnetic fields~time dependent or independen!
would not cool a beam ofN particles. The second kind o
551063-651X/97/55~5!/5948~16!/$10.00
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difficulty is, even if we succeed in applying a non
Hamiltonian interaction to the beam, thesecond law of ther-
modynamicsdictates an increase, instead of a decrease, in
entropy, unless we do some extraordinary things.

In order to cool beams, therefore, one has to introd
some elements of non-Hamiltonianness into the system
proper manner. Electron cooling of ions@5# and ionization
cooling@6# are two methods that insert non-Hamiltonian pr
cesses and/or materials for the species of particles under
sideration. Radiative cooling, such as with synchrotron rad
tion, is a classic non-Hamiltonian cooling method@7#. The
now popular method of laser cooling of atoms is based
manipulation of the internal structure of the atoms~having
electrons circulating around the nucleus! and ultimately on
the radiative energy loss by transition@8#. This method has
been applied to cooling heavy ions in storage rings@9#. How-
ever, beams of charged particles, such as electrons, mu
and protons do not have an easily manipulated internal st
ture. The stochastic cooling method@10# was introduced to
reduce the phase space volume of hadron beams where
cooling methods are ineffective by feedback. The recen
proposed faster optical stochastic cooling method@11# has
been proposed for cooling lepton beams. In these meth
the feedback operates on the average positional deviatio
these particles.

In order to find out how to break this difficulty and to fin
a pathway to cooling, we consider aN-particle system in
which the number of particles is conserved. Define a
N-dimensional phase space~the so-calledG space! probabil-
ity distribution functionD(q1 , . . . ,qN ,p1 , . . . ,pN ;t), the
Liouville distribution function. The conservation of particle
5948 © 1997 The American Physical Society
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implies that the continuity equation in the 6N-dimensional
phase space

]D
]t

1¹•~uD!50, ~1!

whereu5($q̇%N ,$ ṗi%N) is the 6N-dimensional phase spac
flow velocity and¹5($]qi%,$]pi%) is the 6N-dimensional
phase space gradient. If the flow in the 6N-dimensional
phase space is incompressible, or equivalently,¹•u which is
familiar for the condition of incompressibility in fluid me
chanics, we have

]D
]t

1u•¹D50. ~2!

This is usually called the Liouville equation. The pha
space incompressibility condition can be satisfied by
Hamiltonian dynamics.~Hamiltonianness is a sufficient bu
not necessary condition.! In order to derive a basic equatio
which is suitable for cooling problems, general equations
motion for the particles can be expressed as@12#

ṗi5X~ i !1(
j
F~ i , j !, ~3!

q̇i5Y~ i !1(
j
G~ i , j !, ~4!

whereX,Y represent external forces andF,G represent in-
terparticle forces as well as self-interaction forces.

Integrating Eq. ~1! over q2p22qNpN and introducing
f 25 f 1f 11g(q1 ,p1 ,q2 ,p2 ;t), whereg is the intrinsic two-
body correlation function, yields an equation for a one-bo
distribution which can be written as@12#

] f 1
]t

1
]@X~1! f 1#

]q1
1

]@Y~1! f 1#

]p1

1N
] f 1
]q1

E dq2dp2F~1,2! f 1~q2 ,p2 ,t !

1N
] f 1
]p1

E dq2dp2G~1,2! f 1~q2 ,p2 ,t !

52
]@F~1,1! f 1#

]q1
2

]@G~1,1! f 1#

]p1

2NE dq2dp2F~1,2!
]g~q1 ,p1 ,q2 ,p2 ,t !

]q1

2NE dq2dp2G~1,2!
]g~q1 ,p1 ,q2 ,p2 ,t !

]p1
. ~5!

The terms on the left-hand side~LHS! are consistent with
incompressible fluid flow. The first two terms on the righ
hand side~RHS! are non-Hamiltonian self-interaction term
such as radiation@7# or feedback@10#. The feedback may be
looked upon as a time-retarded self-interaction, as the m
tored particle memory in the~nearly! collisionless system
will be fed on itself through the pickup circuit. The third an
fourth terms represent microcorrelations among the partic
e

f

y

i-

s.

A similar more involved equation for the intrinsic two-bod
correlation functiong can also be obtained~see@12#!.

Typically the one-body entropy, which is defined as

S152E dq1dp1f 1lnf 1 , ~6!

is used to determine whether cooling or heating has
curred. This is the conventional entropy and is related to
logarithm of the emittancee. Here we can define a highe
nth order entropy@13# as

Sn52E dq1dp1 . . .dqndpnf nlnf n , ~7!

where f n is the n body distribution function,
f n(q1 ,p1 , . . . ,qn ,pn) derived fromD. The higher-order en-
tropies are seldom studied in physics. It is important to u
derstand the properties of the laws that govern these qu
ties. In fact it seems imperative to develop such theory
the physics of the quality of energy and for a more sophi
cated modern information science. In such a theory the
terplay of various entropies at different hierarchies sho
play an important role.

In Sec. II we discuss a basic idea on how to cool a bun
by introducing a spatially dependent force that cancels
fluctuations through feedback. The method of laser-undula
beat cooling is introduced in Sec. III. In Sec. IV we demo
strate this method by a one-dimensional~1D! numerical
simulation and discuss its limitations. We also examine
properties of the laser light scattered from the beam. In
final section~Sec. V! we summarize our results and discu
the relationship between this light and the previously m
tioned higher-order entropies. We also discuss future area
research.

II. COOLING BY A SPATIALLY DEPENDENT FORCE

Here, we consider a method to realize the control a
cooling of the charged particle system discussed in Sec
When we study the cooling of a charged particle system,
introduction of the discrete nature of the particles is ess
tial. As an example in which cooling can be accomplish
consider a two-particle system. The discrete nature due
finite number of particles leads to fluctuations that allows
to get a handle on the ‘‘texture’’ of phase space to compr
it. In other words, the cooling mechanism involves ‘‘com
pressing the vacuum between particles,’’ which does
contradict Liouville’s theorem as it assumes a~nearly! con-
tinuous phase space. This can be realized by applying a f
that reduces the ‘‘distance’’ between these particles in ph
space. This is trivially accomplished for a two-particle sy
tem by aspatiallydependentforcewhich accelerates the par
ticle with lower momentum and decelerates the other part
to bring them both to a zero momentum difference~see Fig.
1!. By doing so, although the mutual spatial distance rema
as before, the mutual momentum distance collapses and
overall phase space distance~or one may call the effective
‘‘emittance’’ of this system! reduces. Of course a key ingre
dient is that cooling is only achieved when we have info
mation concerning the positions of the particles. An arbitra
spatially dependent force where we do not know the part
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positions would not cool and most likely heat the system
One can generalize this method to a system ofN discrete

particles or to a system with a continuous clumpy distrib
tion of momentum fluctuation. This is done by a spatia
dependent instantaneous application of a forceFz(z) or
equivalently an electric fieldEz(z), as shown in Fig. 2,
where the coordinatez represents the direction of cooling
The kick will move a slice of the distribution vertically in th
phase space~parallel to the momentum direction!. The kick
method might be considered an extension of van der Me
stochastic cooling method@10# applied to a bunched beam
We consider utilization of a laser for this cooling metho
because the wavelength of microwave radiation is too lon
apply to short bunched beams like those in electron or p
tron storage rings. We show here a mathematical proce
to produce a spatially dependent electric fieldEz(z) from the
fluctuation pattern of the beam distribution.

The method of cooling in real space (z direction! ex-
changes phase space elements by application of a spa
resolved forceFz(z,t)5qEz(z,t). Let us consider the cool
ing of a 1D system with distributionf 0 that is non-
Maxwellian ~including clumpy distribution!. The total dis-
tribution f is

f ~z,v,t !5 f 0~z,v !1d f ~z,v,t !, ~8!

FIG. 1. Schematic picture of cooling in two particle~or clump!
system (A,B). Dzini represents the initial real space spread and,
repeating the procedure of kick and rotation, two particles~or
clumps! can approach each other to an order of the scale lengt
the kick field.

FIG. 2. Momentum kick.
-
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whered f (z,v,t50)50, andf 0(z,v) is the distribution mea-
sured before the application of the electric fieldEz(z,t). We
require that the first velocity moment of the distributio
f (z,v,t) after application of Ez(z,t) vanishes; ^v f&
[*v f (z,v,t)dv50. This leads to the relation

^v0&52^v&, ~9!

where ^v0&5*v f 0dv and ^v&5*vd f dv. The distribution
d f in Eq. ~8!, as a result of the application ofEz(z,t), is
obtained as follows:

] f 0
]t

1v
] f 0
]z

1
qE

m

] f 0
]v

1
]d f

]t
1v

]d f

]z
1
qE

m

]d f

]v
50.

~10!

We linearize this equation with the first term being ze
dropping the last term, and transforming to Fourier-Lapla
space

ikv
s

f̃ 0~k,v !1
q

m
FLSE~z,t !

] f 0~z,v !

]v D1sd f̃ ~k,v,s!

2d f ~k,v,t50!1 ikvd f̃ ~k,v,s!50, ~11!

where F denotes the Fourier transform,L denotes the
Laplace transform,d f̃ (k,v,s) is the Fourier-Laplace trans
form of d f (z,v,t) and d f (k,v,t50)50. Using
L@E(z,t)#5E(z)/s @if E(z,t)5E(z) for t.0 and
E(z,t)50 for t,0# and solving ford f̃ (k,v,s), we have

d f̃ ~k,v,s!52
1

s~s1 ikv !

3H qmFSE~z!
] f 0~z,v !

]v D1 ikv f 0~k,v !J .
~12!

The inverse Fourier-Laplace transform yields

d f ~z,v,t !52
q

m
F21H 12exp~2 ikvt !

ikv
FSE~z!

] f 0~z,v !

]v D J
2F21$ f 0~k,v !@12exp~2 ikvt !#%, ~13!

whereF21 is the inverse Fourier transform. The impuls
approximation meanst→0, which yields 12exp(2ikvt)
→ikvt. Therefore, the distribution after a kick~an impulse! is
obtained as

d f ~z,v,t !52F21H qmtFSE~z!
] f 0~z,v !

]v D J
2F21$ f 0~k,v !ikv%t

52
q

m
tE~z!

] f 0~z,v !

]v
2vt

] f 0~z,v !

]z
. ~14!

We impose our condition for feedback̂v0&52*vd f dv.
This leads to the expression

y

of
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^v0&5
q

m
tE~z!E v

] f 0~z,v !

]v
dv1tE v2

] f 0~z,v !

]z
dv,

~15!

wheret is the pulse duration. We solve for expression of t
needed electric fieldE(z) in order to make^v0&52^v&,
obtaining

E~z!52
m

qt

^v0&
^n0&

1
m

q

1

^n0&
E v2

] f 0~z,v !

]z
dv. ~16!

For impulseE(z) applicationt→0, the first term dominates
and, thus, we obtain

E~z!52
m

qt

^v0&
^n0&

, ~17!

where^v0& and ^n0& are functions ofz.

III. BASIC EQUATIONS FOR THE LASER-UNDULATOR
COOLING METHOD

In this section, we present the mathematical procedur
the laser-undulator cooling method presented in the pre
ing section. In Sec. III B, we derive the basic equatio
which describe the self-consistent beat wave kick for
cooling. Based on the equations in Sec. III B, we presen
method to determine the external laser fields from the
served beam information in Sec. III C. We also discuss
conditions for providing an ideal kick which leads to ef
cient beam cooling.

A. Idea of cooling by using a laser-undulator beat wave

The crucial question is how to realize a spatially dep
dent correction force on a bunch particles. For most lep
storage rings, the necessary spatial resolution is far be
microwave technology. An electric fieldEz(z)5Fz(z)/q (q :
charge of particle! would be electrostatic and not practical
an accelerator feedback component. Furthermore, the f
has to travel with the beam particles so as to be alway
phase with the fluctuation pattern^vz&(z) of the beam during
the kick. To realize such a force, we suggest the metho
the ponderomotive beat wave force@14# produced by a linear
undulator and a laser with a broadband spectrum whic
injected coparallel to the beam.

The basic idea of this method is as follows. The coupl
between a laser field with frequency and wave num
(v1 ,k1) and an undulator withkw([2p/lw) (lw : undula-
tor pitch! produces a traveling ponderomotive potential p
allel to the beam. The resonance condition of the ponde
motive potential with a beam particle of energyg is given by

k15
2g2

11K̂2
kw , ~18!

whereK̂[eBw /A2mckw (Bw : undulator magnetic fields! is
the so-calledK parameter. We choosek1 and kw as
2p/(k11kw). ł b ( ł b : bunch length of the beam! so that the
beam bunch is trapped in the ponderomotive potential w
When the dispersion relation Eq.~18! is satisfied for the
e
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frequency and corresponding wave number (v1 ,k1), it is
known that odd higher harmonics of the fundamental la
$(vm[mv1 ,km), m53,5,7•••2n11% also become reso
nant modes. This feature is shown in Fig. 3. This is due
the nonlinearity of the field amplitude which originates fro
the longitudinal oscillation with 1/2 wiggler period. There
fore, by precisely choosing the amplitude and phase of th
higher harmonic lasers as well as the interaction length,
can realize an arbitrary spatially dependent field pattern tr
eling with the beam particles. We let the laser carry the p
cise detailed information necessary to manipulate the inte
phase space structure and the undulator provide a strong
wave field without energy loss. A Bose condensated la
usually containing little entropy~typically Sl;kBln10 close
to the squeezed state or with little information! can wash out
the much higher entropy of a charged particle beam~typi-
cally Sb;kBln10

10) with appropriately configured and re
peated photon-particle interactions.

The overall features of beam cooling in a storage r
system is schematically shown in Fig. 4. Phase space in
mation of the beam~more precisely in this case, the longitu
dinal fluctuation pattern! is extracted at the pickup section
Based on the extracted information, laser fields which h
proper spectrum shape~like amplitude, phase, etc., . . . ! are
programmed through calculations, so that the beam is co
at the kicker section after the interaction. The laser fields~or
superimposed laser wave packet! is transmitted to undulato

FIG. 3. Odd higher harmonics of the fundamental las
$(vm[mv1 ,km), m53,5,7•••2n11% are resonant modes whic
can also kick a beam in longitudinal phase space.

FIG. 4. Overall picture of laser-undulator beat wave cooling
storage ring system.
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~or kicker! by adjusting the phase with the beam orbit a
kicks the bunched beam. During the interaction, the be
entropy is extracted by the laser fields. Namely, the scatte
laser entropy~i.e., photon entropy! should increase when th
incident laser correctly kicks the beam. This exchange
entropy between the bunched beam and laser fields is a
ally observed in our numerical cooling simulation and is d
cussed in Sec. IV. It is also found that after interaction
total power consumption of laser fields is extremely sm
~almost zero!. Namely, although a certain amount of las
power is needed to form the kick field, once the power
supplied to the laser system, the scattered laser light ca
recycled for the next kick, as shown in Fig. 4 by reprogra
ming the spectrum based on new information. During
reprogramming process, the increased laser entropy
thrown away from the system.

B. Basic equations

We investigate the present cooling method by employ
a one-dimensional linear undulator model which descri
the self-consistent interaction between beam particles an
ser fields in the longitudinalz direction @15#. We start from
the situation where the laser fieldsAs and the undulator field
Aw used for cooling the beam are given by

As~z;t !5(
m

Am~z!sincm~z,t !êy , ~19!

Aw~z!5Awsinkwzêy , ~20!

where the phase of the laser,cm , is given by

cm~z,t !5E
0

z

km~z8!dz82vmt1dm . ~21!

Here,vm5mv1 (m: integer! is the angular frequency of th
higher harmonics with respect to the fundamental ang
frequencyv1. km anddm represent the corresponding wa
number and initial laser phase. The Hamiltonian from wh
the equation of motion is derived is described by takingz as
the independent variable

K52A~g221!m2c22@ p̂'2~e/c!~As1Aw!#2, ~22!

where p̂'5( p̂x ,p̂y) is the transverse canonical momentu
which are given byp̂x50 andp̂y52K̂mcsinkwz in this case.
In Eq. ~22!, we neglected the space charge field. The ab
Hamiltonian is equivalent toK52 p̂z52gmvz ( p̂z : the ca-
nonical momentum inz direction! andbz5vz /c is given by

bz.S 12
11K̂2

g2 1
K̂2

g2cos2kwzD 1/2. ~23!

The equation of motion is derived fromdg/dz
5(1/mc2)]K/]t as

dg

dẑ
5
mcaw
2K (

m
amk̂m0~sinc̃m

~1 !2sinc̃m
~2 !!, ~24!
m
ed

f
tu-
-
e
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e
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c̃m
~6 !~z,c!5cm2~m71!kwz2amsin2kwz, ~25!

where cm5mc̃1fm(z)1dm , aw5eAw /mc2(5A2K̂),
am5eAm /mc2, ẑ5kwz, k̂m05vm /ckw , and am5 k̂m0K̂

2/
4g2. Here,c̃ represents the phase of a particle with resp
to the fundamental ponderomotive field which satisfies
equation

dc̃

dẑ
512

k̂10
2g2 ~11K̂2!, ~26!

with the initial conditionc̃( ẑ50)52v1t0([c), where t0
denotes the time that a particle is located atẑ50. fm(z)
represents the shift of the laser phase due to the finite b
current which satisfies

dfm

dẑ
5 k̂m2 k̂m0~[d k̂m!, ~27!

with the initial conditionfm( ẑ50)50. Equation~24! is a
nonlinear equation with respect to the laser amplitudeam due
to the longitudinal oscillation of the particle with perio
p/kw in the ponderomotive phase. This nonlinearity in t
laser amplitude allows resonance with odd higher harmon
(3v1 ,5v1 ,7v1 ,...). This is seen by taking the average
Eq. ~24! over the wiggler period. The even harmonic num
bers are found to cancel out and we are led to

dg

dẑ
52

aw
2bz0g

(
m~odd!

amk̂m0Gm~am!sincm , ~28!

where Gm(am)5J(m21)/2(am)2J(m11)/2(am),bz0

5A12(11K̂2)/g2, andm is taken to be an odd numbe
Here,t0 which gives the initial condition for Eq.~26! ranges
between2p/v1<t0<p/v1.

The transverse current of the beam is described by

J'~z,t !52enbvbE
2`

1`vx~ t,t0!
vz~ t,t0!

d@ t2t~z,t0!#dt0êx ,

~29!

where vb5cA12(11K̂2)/gb
2,gb511Eb /mc2 (Eb : the

beam energy!, nb the average beam density
t(z,t0)5t01*0

z(1/vz)dz, and v'(t,t0) the velocity of an
electron at timet which enters the interaction region a
t5t0. Then, the field equations which govern the field a
plitudeam and the phase shiftfm are derived from the Max-
well’s equation in terms of the above nonlinear current
follows:

dam

dẑ
5

gbbbj
2

2k̂m0
awK sinc̃m

~1 !2sinc̃m
~2 !

bzg
L , ~30!

dfm

dẑ
5

gbbbj
2

2k̂m0

aw
am

K cosc̃m
~1 !2cosc̃m

~2 !

bzg
L , ~31!

where bb[vb /c, j[vb /Agbckw , and vb[A4pnbe
2/m.

^A&5(1/2p)*2p
1pAdc represents the average of the bea
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particles over the fundamental ponderomotive phase. T
by taking the wiggler average, Eqs.~30! and ~31! reduce to

dam

dẑ
5

gbbbj
2

2k̂m0
awKGmsincm

bzg
L , ~32!

dfm

dẑ
5

gbbbj
2

2k̂m0

aw
am

KGmcoscm

bzg
L . ~33!

The set of Eqs.~26!, ~28!, ~30!, ~31! @or ~32!, ~33!# describe
the self-consistent interaction between the multifrequency
ser fields and the beam particles which is essentially
same as the free-electron laser~FEL! description.

In deriving Eqs. ~30! and ~31!, we assumed periodic
boundary conditions for the fundamental ponderomot
phasec̃. Therefore, the beam densitynb in Eq. ~29! is given
by nb5N/lp , whereN is the particle number per bunch an
lp52p/(k101kw) is the wave length of the fundament
ponderomotive potential. In the case of a storage ring wh
circumference isL, nb is given in terms of the averag
beam currentJb as

nb5
Jb

ueuvb

L

lpMb
, ~34!

whereMb is the number of bunches in the ring.

C. Determination of the kick field

In this section, we provide the procedure to determine
laser amplitude and phase from the information of the fl
tuation pattern of the beam bunch. Here, we begin by solv
Eq. ~28! order by order assuming the smallness param
e;ug ini2g resu/g ini!1, whereg ini5g(z50) is the initial

particle energy andg res5Ak̂10(11K̂2)/2 is the resonantg
which satisfiesdc̃/dẑ50. Keeping the zeroth order solutio
with respect toe;udgu/g ini (dg[g ini2g res), by taking
g5g ini andc̃5j~5const! on the RHS of Eq.~28!, we sim-
ply obtain

g~0!~ ẑ;j!5g ini1 (
m~odd!

Fmsin~mj1dm!ẑ, ~35!

whereFm52@awamk̂m0Gm(g ini)/2bz(g ini)g ini #. The solu-
tion up to the first order with respect toe is obtained as
follows. Equation ~26!, the phase of the test particle,
solved by employing the zeroth order orbit Eq.~35! as fol-
lows:

c̃.j1e1ẑ1e2ẑ
2, ~36!

e1512
k̂10~11K̂2!

2g ini
2 ;

2dg

g res
;O~e!, ~37!

e25
k̂10~11K̂2!

2g ini
2

f ~j!

g ini
.S 12

2dg

g res
D f ~j!

g ini
.
f ~j!

g res
, ~38!

where f (j)5(mFmsin(mj1dm). The third term on the RHS
in Eq. ~36! represents the deviation from the straight moti
n,

-
e

e

h

e
-
g
er

of c̃ ~and theng) during the kick. Note that sincef (j) is
chosen so thatf (j) ẑ.dg from Eq. ~35!, e2. f (j)/g ini

.(dg/g ini) ẑ.e when the interaction lengthẑ is chosen
ẑ;1. By substituting Eq.~36! into Eq. ~28!, we are led to a
solution up to first order ine as follows:

g~ ẑ,c̃;j!5g ini1 (
m~odd!

FmF ẑsin~mj1dm!

1Sm2 e1ẑ
21

m

3
e2ẑ

31
dkm
2
ẑ2D cos~mj1dm!G ,

~39!

where we assumed that the shift of the laser phasefm is
simply estimated byfm.dkmẑ<O(e). As we discussed
above, sincef (j)52dg/ ẑ and e2ẑ

3.2(dg/g res) ẑ
2, then

Eq. ~39! is rewritten as

g~ ẑ,c̃;j!5g ini1 (
m~odd!

FmH ẑsin~mj1dm!

1F23mS dg

g res
D1

dkm
2 G ẑ2cos~mj1dm!J .

~40!

Here, we divide the fundamental ponderomotive pha
into n slices in which the beam bunch is located as shown
Fig. 5. We assume that there areNj particles in thej th slice
and the total particle number in the bunch isN5( j50

n21Nj .
Let

^dg& j5(
i51

Nj g i

Nj
2g res ~41!

be the energy fluctuation in thej th layer which is in principle
experimentally observable@16,17#. Here, the averageg, i.e.,
ḡ5(1/n)( j50

n21( i51
Nj (g i /Nj ) is identical tog res since the fun-

damental laser wave numberk̂10 is determined by the rela
tion k̂1052ḡ2/(11K̂2). The laser amplitude and phase a
determined from Eq.~35! by neglecting the change of th
phase as follows. That is, by takingg( ẑ,j) to g res and av-
eraging Eq.~35! with respect to particles in each slice, w
obtain

FIG. 5. The fundamental pondermotive phase broken up
n slices withNj particles in thej th slice.
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^dg& j5 (
m~odd!

^Hm& jsin~mj j1dm!, ~42!

where j j52p j /n and ^Hm& j52( i51
Nj Fm(g ini ,i)/Nj . Here,

^Hm& j.Hm(g res)([2Fm(g res) ẑ) is assumed. Therefore
for the observed fluctuation profilêdg& j in each slice, the
amplitudeHm and phasedm are determined through the Fou
rier transform relation. Note here that since the even harm
ics are excluded in Eq.~42!, the reconstruction of the fluc
tuation profile in terms of the Fourier amplitude and pha
by employing only the odd harmonics is incomplete. Ho
ever, the incompleteness can be minimized by the follow
discussion. The wave amplitudeam and phasedm are ob-
tained in terms ofHm(g res) and the interaction length,ẑ, as

am.aS 2b̄z0g resH̄m

awk̂m0Ḡmẑ
D , ~43!

dm5tan21F E
2p

1p

dg~j!cosmjdjY E
2p

1p

dg~j!sinmjdjG ,
~44!

where b̄z05bz 0(g res), H̄m5Hm(g res), and Ḡm
5Gm(g res). a is an adjustable parameter to let^dg& j tend to
zero @18#. Due to the lack of even harmonics in the las
field, the coefficienta, which vanishes the fluctuations,
ideally given by 2, but adjustably chosen by taking into a
count the effect of the phase change. In Eq.~43! the laser
amplitude is inversely proportional toẑ and can be reduce
by taking a laser interaction length short. However, the a
plitude as well as the interaction distance has to be chose
that they satisfy the ideal kick condition, as discussed in S
III A.

D. Constraint for an ideal kick

Here, we consider several mechanisms which prev
beam kick from being ideal within the present framewo
First, the second term on the RHS of Eq.~39! @or Eq. ~40!#
provides a limitation on the ideal kick condition. Since t
kick field is determined by neglecting the terms which a
proportional to cos(mj1dm) in Eq. ~40!, the deviation~or
error! of the average energy of thej th layer fromg5g res
after the kick,Dgerr, is estimated by

^Dgerr& j5(
m

FmF23mS ^dg& j
g res

D1
dkm
2 G ẑ2cos~mj1dm!,

~45!

wheref (j) in Eq. ~38! is estimated byf (j)52^dg& j / ẑ. The
first term of the RHS in Eq.~45! represents the effect o
ballistic phase change due to the mismatch betweeng res and
the average particleg in each layer. The second term repr
sents the shift of the laser phase due to the finite cur
effect. In the small current limit where the laser amplitu
am and phasefm are not changed during the kick, the co
dition for energy spread to realize an ideal kick~or cooling!
by this method is given by
n-

e
-
g

r

-

-
so
c.

nt
.

nt

^dg&b
g res

!
3

2mẑ
. ~46!

In obtaining Eq.~46! from Eqs.~42! and ~45!, we estimate
^dg& j simply by^dg&b , where^dg& j in Eq. ~45! is estimated
by the average beam energy spread^dg&b . It is found that a
shorter interaction distance allows a larger initial ener
spread and large scale fluctuations, which have a smam
number, also allow a larger energy spread. This result in
cates that sincêdg&b /g res becomes smaller with cooling
once the condition given by Eq.~46! is initially satisfied for
the largest scale fluctuation, the small scale fluctuati
which have the largerm number satisfy the condition Eq
~46! and can be continually cooled.

The kick of the beam is also modified through the chan
of the wave number of the laser field in the higher be
current and/or density case. The condition on the beam d
sity for an ideal kick is also estimated from Eq.~46! and Eq.
~33! as

j2S [
vb
2

gbc
2kw

2 D !
4k̂m0gb

ẑGm
S amawD , ~47!

where^coscm&.1 is assumed in Eq.~33!. By employing Eq.
~43!, we rewrite Eq.~47! as

nb!
4mc2kw

2

pe2
gb
2H̄m

aw
2Gm

2 ẑ2
, ~48!

where the density limit is proportional togb
2/ ẑ2.

Once the fluctuations are eliminated by the above k
procedure for a particular turn, fluctuations are bound to
induced by the phase space rotationM~K;P!. Additional
inducement may come in through nonlinearities of the m
nets and rf waves and through other Hamiltonian element
~deliberately! induce fluctuations. Thus, the laser fields a
adjusted turn by turn~or in a whatever necessary perio!
based on the induced fluctuation pattern to match Eqs.~43!
and ~44!.

IV. NUMERICAL EXPERIMENTS

As a demonstration of the present cooling method,
show a numerical example in the case of a shortly bunc
electron beam in this section. Typical beam parameters
the beam energyEb5200 MeV (gb.392), the bunch
length l b<0.2 cm, the initial beam energy sprea
Dg/gb.3%, and the beam currentJ̄b50.5 A/cm2 „the av-
erage current density in the storage ring,Jb , is given by
Jb5 J̄b@(lpMb)/L#…. From the bunch size, we determine th
fundamental laser frequency asv1/2p5150 MHz so that
l([2p/v1). l b . The undulator is designed so th
lw50.984 m andBw53.85 KG, where the correspondin
K̂ parameter isK̂.25 and the interaction length is chosen
be ẑ5p ~half undulator pitch! in the present simulation. We
initially provide the beam distributionf b in the fundamental
phase space according to

f b~g,c0!5
N

2pscsg
expF2

c0
2

2sc
2 2

~g2gb!
2

2sg
2 G , ~49!
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wheresc andsg are the standard deviation of the bunch
the phase and longitudinal energy directions and there
scsg represents the longitudinal emittance.

It should be noted that with the current simulation para
eters and necessary resolution for cooling a resolution
;30 mm or an equivalent bandwidth of;10 THz is needed
in the pickup or detector of an actual system. Although su
resolution is not currently available, it may be possible
time of flight methods@11# or other means which we ar
currently investigating. We want to demonstrate the b
wave method as a proof of principle and examine the con
quences for cooling in having such a system.

A. Beam phase space

Figure 6~a! shows the initial particle distribution in th
fundamental phase space. First, we show the case in w
the fundamental ponderomotive phase is divided i
n5128 slices andNL532 odd harmonic lasers are em
ployed. In the simulation, the beam bunch is kicked by
adjusted laser beat wave by the half undulator pitch so
the fluctuation inside the beam is minimized. The above k
process is repeated by renewing the laser fields turn by t
modeling the storage ring as a simple Hamiltonian rotation
phase space. We assume in this simple model that the rin
dispersionless. In a real machine the dispersion among o
effects plays an important role in the beam dynamics, bu
this paper we concentrate on the interaction. A proper be
rotation in phase space is applied for each turn around
beam center to extract the fluctuation from the beam for
c0 axis. The particle distribution and density contour p
afterN51000 turns andN56000 turns are illustrated also i
Figs. 6~b! and 6~c!, respectively. It is found that the bea
bunch is rapidly cooled down on a turn by turn basis both
the phase and energy directions. The turn number de

FIG. 6. Particle distribution plot in phase space at three differ
turn numbers. ~A set of parameters, Eb5200 MeV,
Dg/g ini.0.03, l b.2 mm, v15150 GHz, lw50.984 m, Bw

53.85 kG (K̂.25 andd ẑ5p were chosen!; for particle distribu-
tion ~a! turn N51, ~b! N51000, and~c! N56000, respectively.
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dence of the normalized emittanceê̄[sĉsĝ(5scsg /pgb)
is shown in Fig. 7. The emittance is rapidly reduced w
turns almost following an exponential dependence up
N.1000–1500 and then the cooling rate becomes sma
At aroundN56000 turns, the emittance is found to be r
duced to about 1/50th of the initial one.

Figures 8~a! and 8~b! show the fluctuation pattern
^dg& j /ḡ, before and after the kick atN51000 turns which
corresponds to Fig. 6~b!. The corresponding adjusted be
field to kick the beam and minimize the fluctuation given
Fig. 8~a! is shown in Fig. 9~a!. The power spectrum of the
laser field is also shown in Fig. 9~b!. After the kick by the
beat wave@Fig. 8~b!#, the fluctuation level is reduced com
pared with the one before the kick@Fig. 8~a!#. By that turn
number (N51000), large scale fluctuations which corr
spond to lower mode numbers have been removed.
higher mode numbers in the power spectrum are domin
for the correction of smaller scale fluctuations. The tu
number dependence of the laser power is illustrated in F
10, for them515 mode 10~a! and them545 higher har-
monic 10~b!. Since the fluctuation pattern of the bea
changes turn by turn, each mode amplitude shows stoch
oscillations. Each mode amplitude is also found to decre
with cooling by an almost exponential dependence in corr
tion with the beam emittance~Fig. 7!.

Figure 9~c! shows the difference of the power in eac
mode afterPm

(a) and beforePm
(a) the kick dPm[Pm

(a)2Pm
(b) .

Due to the kick by the beat wave, the fluctuations are fou
to be reduced. As seen in Fig. 9~b!, more laser power is

t

FIG. 7. Emittance«̂[scsg /pgb as a function of turnN for
slice numberNL532, NL516, andNL58.

FIG. 8. ~a! and~b! are fluctuation pattern̂dg& j /ḡ of the beam
before and after the kick, at the kick at turnN51000.



lle
th
it
i-
se
we
h
ra
p
ro

nd
s

ffi-
In
ter
ers
s

um-
onic
the
m-
the
. As
he
rent
ber
eam

5956 55KISHIMOTO, KOGA, TAJIMA, AND FISHER
required for higher mode numbers for correction of sma
scale fluctuations. Furthermore, it is notable that while
change in the laser power spectra is small but fin
(udPmu;12300 W/cm2) and, in fact, can be used as a d
agnostic tool for next kicks, the change in the total la
power before and after the kick and, thus, the overall po
consumption are extremely small. This result indicates t
cooling takes place by exchanging the fluctuations and
domness in the beam particles with the laser fields by sim
rearranging the power spectra. Resultantly, the beam ent

FIG. 9. The beat wave pattern~a! at turnN51000 is shown.
The power spectrum of laser field~b! at turnN51000, and~c! the
difference of laser power in each mode afterPm

(a) and beforePm
(b)

the kick (dPm[Pm
(a)2Pm

(b)).

FIG. 10. Turn number dependence of laser power of the~a!
m515 mode and~b! them545 higher harmonic.
r
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e

r
r
at
n-
ly
py

is transferred to the laser fields during the interaction a
then the scattered laser~or photon! entropy is increased, a
we discuss in Sec. IV B.

Here, we investigate the dependence of the cooling e
ciency on the number of higher harmonics of the laser.
Fig. 11, we show a particle distribution plot of the beam af
N56000 turns when we employed 16 odd harmonic las
(m51231) @Fig. 11~b!# and 8 odd harmonic laser
(m51215) @Fig. 11~c!# which correspond ton564 and
n532 slices in the phase space, respectively. The turn n
ber dependence of the emittance for the 16 and 8 harm
laser cases are also shown in Fig. 7. It is found that
cooling rate and/or efficiency strongly depends on the nu
ber of harmonic lasers and the slice which corresponds to
precision of the beam diagnostics in the phase space
discussed in Sec. III D, the ideal kick is also modified by t
change of the wave number of laser when the beam cur
and/or density becomes higher. In Fig. 12, the turn num
dependence of the emittance for the case of an average b

FIG. 11. Particle distribution plot of the beam afterN56000
turns when~a! 32 odd harmonic lasers (m51263), ~b! 16 odd
harmonic lasers (m51231), and ~c! 8 odd harmonic lasers
(m51215) are employed.

FIG. 12. Emittance «̂[scsg /pgb as a function of turn
N for slice number NL532 with beam current
J̄b50.5 A/cm2, 5 A/cm2, and 50 A/cm2.
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current of J̄b50.5, 5.0, and 50 A/cm2 are also shown. Note
that the map,M(K;P), phase space rotation angle per inte
action is different from previous cases to accentuate the
ferences between the 0.5, 5.0, and 50 A/cm2 cases. The par
ticle distribution plot atN56000 turns is shown in Fig
13~b!. Although the initial cooling rate which shows an e
ponential dependence does not change as seen in Fig. 12
found that the cooling efficiency afterN51000–1200 be-
comes lower and is almost saturated. The decrease o
cooling efficiency is considered as follows. In the pres
method strong cooling of the beam is accompanied with c
traction in the phase direction and the beam density beco
higher. As a result, the interaction between laser field
beam particles becomes strong and the laser field pat
which is initially adjusted, is modified during the kick due
the change in the wave numberdkm in Eq. ~45!. In the
present case, a laser field with the lower mode num
(m51–15) is found to gain energy from the beam particl
Then, the ideal kick of the beam which leads to cooling
prevented.

B. Laser phase space

In Fig. 14, we show the laser phase space where
change of laser phasefm and amplitudeam for one turn
obtained from Eqs.~30! and~31!, (Dfm ,Dam /am), are plot-
ted atN5500 @14~a!# andN55000 @14~b!# for theNL532
case. When the irradiated laser structure is in a reason
match with the internal structure of the beam~to themth
order!, rapid cooling of the beam and rapid entropy increa
of the laser light simultaneously take place, a resonance
nomenon of entropy. This is also confirmed in Fig. 14~c!
which illustrates the turn number dependence of the r
mean square ~rms! of the phase space distributio
sL[sasf@(sa ,sf): rms in (Dfm ,Dam /am)#, showing an
opposite dependence from that of the beam emittance@Fig.
7#. Namely, the reaction of the laser fields with the be
increases with a decrease of the beam emittance, indicat
diminishing returnin the cooling system. Note that the in
creased laser entropy is taken out from the system on e
turn because the laser fields are renewed turn by turn b
on the beam fluctuation diagnostics. In Figs. 15, we a
show (Dfm ,Dam /am) plot for NL532 @15~a!# andNL58
@15~b!# for different values of the field strength parame

FIG. 13. Particle distribution plot atN56000 turns for current
~a! J̄b50.5 A/cm2 and ~b! 50 A/cm2.
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a in Eq. ~43!, i.e., a51.0~I! anda52.5~II !. Note that the
value ofa larger thana52 provides an over kick as dis
cussed in Eq.~43!. Even though the individual phase an
amplitude are tuned, if they are over kicking, as demo
strated in~II ! in Fig. 15~a! and 15~b!, no significant heating
of the laser and therefore no significant cooling of the be
as a whole takes place. In the conventional wave-part
interaction, when the wave is in resonance with partic
~‘‘the wave-particle resonance’’!, energy exchangeDE be-
tween the wave and particles takes place. However, entr
exchangeDSmay or may not take place. For example, in t
simple case of Landau damping of a single small amplitu

FIG. 14. Plot of (Dfm ,Dam /am) at turn N5500 ~a! and
N55000 ~b! for NL532 case. To increase the statistical accura
(Dfm ,Dam /am) over the region 250<N<750 ~a! and
4750<N<5250 are simultaneously plotted.~c! Turn number de-
pendence of the effective laser interaction temperat
sL[sasf .

FIG. 15. Plot of (Dfm ,Dam /am) during 1<N<5000 for dif-
ferent value of field strength parametera51 ~I! anda52.5 ~II ! in
the case ofNL532 ~a! andNL58 ~b!.
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FIG. 16. The correlation integral,C(r ), is
plotted for various delay vectors consisting
(Dfm ,Dam /am) for the longest wavelength
mode (m51).
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wave, we note thatDEÞ0,DS.0, and thusuDS/DEu.0.
On the other hand, in our case when the wave structur
well matched with the internal phase space structure of
particle beam, even though the energy exchange betwee
waves and particles is negligible (DE;0), a large amount of
entropy exchange (DSÞ0) may take place, i.e.
uDS/DEu;`. We call this later phenomenonentropy reso-
nance~in contrast to the conventional wave-particle ener
resonance!.

Next we examine the dimensions of the scattered li
when cooling occurs in the beam. This is done by calculat
the dimensionality of the attractor of the time series
(Dfm ,Dam /am) . The dimension of the attractor indicate
the degrees of freedom of the system needed to specify
state of the system@19#. It is the number of degrees of free
dom realized by the dynamics as opposed to the underl
physical degrees of freedom@19#.

To calculate the dimensionality of the attractor for a tim
series we use a variation of the method of Grassberger
Procaccia@20,21#. In this method one calculates the corre
tion integralC(r )

C~r !5 lim
1

N2 3$ number of pairs~ i , j !

whose distanceuX i2X j u is less thanr %, ~50!

where them dimensional delay vectorsX i andX i are con-
structed from the time series

X i5„f ~ t i !, f ~ t i2t!, f ~ t i22t!, f ~ t i23t!, . . . ,f ~ t i2mt!…,
~51!

X j5„f ~ t j !, f ~ t j2t!, f ~ t j22t!, f ~ t j23t!, . . . ,f ~ t j2mt!…,
~52!

where the indicesi , j refer to different times in the time
series. The dimensionm of the vectorsX i ,X j must be
greater than the dimension of the attractor. We want to fin
power law of the form

C~r !'~r !n, ~53!
is
e
the

y

t
g
f

he

g
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a

wheren is dimension of attractor. To find the exponentn of
a particular curve we calculate a local value of the slope
ln(C)/ln(r) between neighboring points@19#. To find the di-
mension of the time series one increases the dimension o
vectors X i ,X j until the calculated dimension approach
some asymptotic limit. It has been shown that because
artifacts in this measurement technique, it is a rough mea
of the underlying dimensionality of a system, but one can
at least whether the system is completely random or very
dimensional@19#. For purely random noisen increases with-
out bound as the dimension of the vectorsX i ,X j are in-
creased.

We calculate the dimension of the time series
(Dfm ,Dam /am) for the shortest and longest laser modes
a total of 32 modes used to cool the beam where a tota
5184 simulation particles is used. The time series for e
mode consists of 6000 data points. Figure 16 shows a plo
C(r ) for various delay vector lengths for the longest mo
used to cool the beam. It is apparent that there is not a si
power law which describes the curves. It is known th
strange attractors have a wider range of scaling prope
than can be described by a single exponent@19#. The curves
level off for larger due to the finite length of the time serie
Figure 17 shows the local slope for each of the differe
delay curves in ln@C(r)#/ln(r). It is apparent that as the dela
is increased the local slope also increases until the numbe
delay vectors is 50. At this point the curves for 50, 60, a
70 delay vectors converge. The curves indicate that
maximum dimension is between 30 and 40. For the shor
wavelength mode the local slope ln@C(r)#/ln(r) increased
without bounds as the delay was increased indicating that
dimension of the time series was close to that of white no
The reason for this difference in the dimensions between
modes is the fact that the beam has been cooled substant
To the long wavelength mode the beam looks more like
single particle and, therefore, the dimensionality reflects
number of laser wave modes used to kick the system. In
case 32 modes were used. When we calculate the dimen
ality of the system using the shortest wave mode, more of
fine scale internal structure of the beam is seen. On this fi
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FIG. 17. Local power law fit for the longes
wavelength mode toC(r ) for the various delay
vectors vs^r /r 0&, where r 0 is an arbitrary nor-
malization distance,n is the power law exponent
and the embedding dimension is twice the nu
ber of delay points used, since bot
(Dfm ,Dam /am) are used. The dimension is de
termined when curves of different delays co
verge to the same values. Convergence occurs
tween 50 and 70 delay points givingn'30–40.
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scale the actual degrees of freedom of the beam from
number of particles in the system is reflected. High dim
sionality for the shortest mode indicates that it is still use
for cooling. It indicates that there are fluctuations which c
be eliminated. The low dimensionality of the longest mo
reflects that cooling is hard to perform since internal fluct
tions have been eliminated at these scale lengths. It is ap
ent that as the emittance of the beam is reduced the dim
sionality measured by the short and long wave mode sho
approach each other and simply reflect the input degree
freedom from the laser light. Physically, if the beam h
been cooled to zero emittance, then it would look like
single particle of chargeN, whereN is the number of par-
ticles in the beam. When the beam is a point particle, all
laser modes cannot make any internal structural change
the beam. Since the beam is kicked by the incoming la
light, the dimensionality or degrees of freedom of its moti
is determined by the number of modes input.

When the particle number of the simulation is increas
by four times a slower cooling time and, therefore, larg
emittance for the beam after the same number of kicks, 6
is observed. For the longest mode we get a dimension
around 25 to 30 and for the shortest mode we get a dim
sion of around 60 to 70. To the long wavelength mode
beam again looks more like a single particle and, theref
the dimensionality reflects the number of laser wave mo
used to cool the system. When we calculate the dimens
ality of the system using the shortest wave mode, more of
fine scale internal structure of the beam is again seen. H
ever, in this case on this finer scale the fluctuation leve
lower due to the larger number of particles. The rand
fluctuations or coarse grained structure has been pushed
smaller scale size due to the addition of particles. On
same scale length compared with fewer particles the ph
space looks more ‘‘fluid’’ like. So the dimension measur
for this mode is less than that measured in the previous si
lation.

We can further analyze the characteristics of the scatte
laser light by looking at the entropy of the light. The corr
lation dimension of the time series of the scattered laser l
can be related to the concept of higher-order entropy Eq.~7!
he
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through the Kolmogorov entropy@22#. First we need to de-
fine a quantityKn as

Kn52 (
i0 , . . . ,i n

Pi0 , . . . ,i n
lnPi0 , . . . ,i n

~54!

where Pi0 , . . . ,i n
is the joint probability that a trajectory

xW (t)5@x1(t), . . . ,xd(t)# in a d-dimensional space which
has been partitioned into boxes of sizel d, where l is the
precision, follows the sequencexW (t50) is in box
i 0 , xW (t5t) is in box i 1, . . . , andxW (t5nt) is in box i n . This
quantityKn is the discrete time dependent equivalent of t
higher-order entropy,Sn , in Eq. ~7! where the phase spac
variables are replaced by points in a time series. The K
mogorov entropy is then defined by

K5 lim
t→0

lim
l→0

lim
N→`

1

Nt (
n50

N21

~Kn112Kn!, ~55!

52 lim
t→0

lim
l→0

lim
N→`

1

Nt (
i0 , . . . ,i N

Pi0 , . . . ,i N
lnPi0 , . . . ,i N

,

~56!

where it is defined as the average rate of loss of informat
For regular motionK50, for chaotic motionK.0, and for
random motionK→`. In practical terms theK entropy is
difficult to calculate. However, a much easier quantity
calculate, known as theK2 Renyi entropy is related to the
correlation integralCd(e) calculated previously@23#

K2d~e!5
1

t
ln

Cd~e!

Cd11~e!
, ~57!

K25 lim

Sd→`

e→0 D
K2d~e!, ~58!

whered is the dimension of the space in which the corre
tion integral is calculated,e is the size of the region of phas
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space, andn is the correlation exponent which characteriz
the dimension of the attractor. It has been shown that

K2<K ~59!

and for typical cases is numerically close@23#.
In Figure 18 we show the maximumK2d entropy calcu-

lated using Eq.~57! from the correlation functionCd(e) for
all values ofe versus the dimensiond. The two cases shown
are from a cooling simulation for the long waveleng
@18~a!# and short wavelength@18~b!# laser modes. We plot
theK2d entropy calculated for white noise as a compariso
It can be seen that as the dimensiond is increased the en-
tropy decreases for all three cases. TheK2d entropy indicates
the rate at which information is lost or, in our case, the rate
which information is extracted by the laser beam. Low va
ues indicate that information is being extracted at a slow ra
whereas high values indicate a fast rate of information e

FIG. 18. MaximumK2d entropy plotted vs the dimensiond for
~a! long wavelength and~b! short wavelength. White noise is plot
ted for comparison.
s

.

t
-
e,
-

traction ~fast cooling!. As is apparent from the figure th
short wavelength laser is extracting information at the fas
rate. Another feature is the structure in both the long wa
length and short wavelength entropy. The white noise
tropy smoothly decreases with increasing dimensi
whereas the scattered laser light shows jumps in the entr
For some values the entropy extraction rate is very high
Fig. 19 we show the maximumK2d entropy versus the di-
mensiond for the long wavelength@19~a!# and short wave-
length @19~b!# for a noncooling case@a52.3 in Eq. ~44!#.
We plot the cases versus calculation of the maximumK2d
entropy for white noise. It is interesting to note that for t
long wavelength mode the entropy nearly overlaps the
tropy calculated for white noise. Also the corresponding la
of structure is apparent. In the short wavelength case the
still structure, indicating that cooling is still occurring for th
short wavelength mode. This would not have been appa
only using the usual one-body entropy calculation.

FIG. 19. MaximumK2d entropy plotted vs the dimensiond for
~a! long wavelength and~b! short wavelengtha52.3 ~no cooling!.
White noise is plotted for comparison.
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V. ENTROPY AND COOLING

We summarize some of the findings in the compu
simulation of our cooling method by arranging the las
modes to manipulate the inner structure of the beam in S
IV as follows.

~1! When cooling of the electron bunch takes place~Fig.
6!, reduction of the area in phase space of the electron bu
is accomplished by an increase of the area in phase spa
the laser photons@Fig. 14 and Fig. 15~I!#. This happens when
the imposed laser pattern,$(am ,fm)% is matched well with
the internal structure of the beam. On the other hand, if
choose the laser to over kick (a greater than 2!, the matching
is not good and neither the reduction of the area in be
phase space or the increase of that of the laser photons
curs as much as in the above case@Fig. 15~II !#.

~2! As shown in Fig. 7, the cooling time sensitively d
pends on the number of colors~modes! of the laser imposed
the greater the number of colors, the quicker the cooling
This means that the finer the detail of phase space is reso
and thus manipulated, the faster the reduction of the ph
space volume is.

~3! As the number of turns of the electron bunch in t
ring increases and its cooling proceeds, the increase in
area in the phase space of the laser light becomes gr
@Fig. 14~c!#, while the decrease of the area in phase spac
the beam slows down~Fig. 7!. This means that it become
more difficult to cool cooler beams and takes more eff
~and thus entropy! to accomplish the same amount of coo
ing.

~4! The dimension of information contained in light sca
tered off the beam is dependent on how much cooling
taken place. The dimension associated with short wavele
light is greater than that with longer one and it asympto
toward the number of independent modes of laser light
are imposed externally by our algorithm. This means that
scattered light sees detailed dynamics of internal struc
that is coarse grained from the system ofN individual par-
ticles down to the number of degrees of freedom tha
roughly equal to the dimension. The shorter the laser wa
length, the more minutely it can resolve in phase space.

~5! When the higher dimensional entropy of the scatte
laser light is calculated, it is found that when cooling occu
there is structure. That is, the entropy fluctuates with dim
sion whereas white noise smoothly decreases with increa
dimension. When no apparent cooling is occurring, the
tropy calculated from the scattered laser loses the structu
long wavelengths, but some structure is still present at s
wavelengths.

These phenomena are all related to the internal struc
of system of charged particles and photons. In order to c
acterize these phenomena theoretically and to formu
mathematically, we analyze the dynamics in terms ofm
space~six-dimensional phase space! andG space (63M di-
mensional phase space, whereM is the dimension of appro
priate degrees of freedom or ‘‘particles’’!. We introduce
6M -dimensionalG space and its dynamics for the descr
tion of m-space internal dynamics. The volume reduction
phase space ofm space corresponds to the reduction of
mensions of phase space ofG space. Once we introduceG
space, it is straightforward to introduce higher-order corre
r
r
c.
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tion and related higher-order entropy.
The reason why we need to introduce such a tool may

illustrated by the following simplified example of magnet
tapes@13#. Think of a bad quality tape which contains nois
This tape does not contain information. Think of anoth
tape which contains a poem. This tape contains a la
amount information of high quality. Consider a third tap
which is blank. This tape contains no information, but
coherent. According to Shannon’s entropy@24# which is dis-
crete equivalent to the one-body entropy in Eq.~6! ~related to
the one-body distribution function! and is a measure of in
formation, the entropy of the noisy tape and that of a po
are high. Shannon’s entropy cannot distinguish the inform
tion of the noisy tape~useless or none! and the poetic tape
~useful and rich!. One may also argue that both the bla
tape and poetic tape are coherent, while the noisy tap
incoherent. Once again Shannon’s entropy fails to carry s
a distinction. In order to remedy this difficulty, higher-ord
entropies, based on higher-order correlations, have been
troduced@13#. These quantities are based onG-space quan-
tities and dynamics~and their distribution functionsD or
f n). The usefulness of the higher-order entropies is m
apparent in our calculation of theK2 entropy. By calculating
this quantity the noisy tape, blank tape, and tape with poe
can be easily distinguished by examining the variation
K2 with increasing dimension~longer correlation times!.
When we examine the scattered laser light, random w
noise can be distinguished from cases where cooling is
curring due to the structure observed at higher correla
dimensions. Particularly in the case of overkicking, the d
tinction from white noise is only apparent when the high
dimensional entropy is calculated@see Fig. 19~b!#.

The probability distribution function inG space forN
‘‘particles’’ ~or 6N degrees of freedom! is given by
Du[ f N(q1 ,p1 ,q2 ,p2 , . . . ,qN ,pN ,t) as in Sec. I. Cooling,
the reduction of the area~or volume! of phase space inm
space, corresponds to a ‘‘bundle up’’ of scattered vectors
G space. If this bundle up loses spread in one~or more!
particular direction~s!, this corresponds to losing of dimen
sions inG space. When the cooling proceeds in our measu
ment in Sec. IV, the dimension of the laser light has reduc

Another way to look at the higher-order entropies from
phase space point of view is as a representation of the b
emittance in higher dimensions. As was mentioned in
beginning of Sec. I the logarithm of the beam emittance
related to the entropy. The higher-order entropiesSn in Eq.
~7! are determined fromf n then body distribution function.
The functionf n can be thought of as a function in a high
dimensional space. One can imagine this as having an an
gous higher dimensional emittanceen wheren is the dimen-
sion of the space. In the case where we go to
6N-dimensionalg space the distribution function is a sing
point and the corresponding high dimensional emittan
e6N and, therefore, the higher-order entropyS6N in that space
is zero. As we go to lower and lower dimensional spaces
corresponding emittance and higher-order entropy incre
In six-dimensional phase space (m space!, where the equa-
tions of motion are integrated over 6N26, coordinates, we
obtain the usual emittance and entropy. As we cool a char
particle beam consisting ofN particles the area inm space
reduces. Correspondingly, the higher dimensional emittan



ol
on
ly

le

r
d
r

h
d
ca

l

g
.,
a
t

all
ha

th
c
ic

ed-
ace
lem
of
s is

d
ob-
un-
ula-
as
ack
ues
In
at
tion

ion
e
c-
t,

ally
nce,
e-
for-
-
ild a
d to
.
ar-
d,
us
ana-
f

he
n-

5962 55KISHIMOTO, KOGA, TAJIMA, AND FISHER
and higher-order entropies also decrease. Essentially, co
of aN particle system is pushing the single point distributi
function in the 6N-dimensional space down to progressive
lower dimensions. One can see that when aN particle system
is cooled to its limit the entire distribution looks like a sing
point in six-dimensional phase space (m space!.

The observation that more rapid cooling with more colo
~or degrees of freedom! of illuminated laser may be terme
as the greater change in~specific! higher-order entropy pe
energy. In other words for a given change of energydE, the
modulus of the change of the entropydSn is greater for
greatern

U1n ]Sn
]E U.U 1m ]Sm

]E U, ~60!

for n.m, whereSn was defined in Eq.~7!. Note that for
m51 for the dynamical system with temperatureT we know
the familiar result

]S1
]E

5
1

T
, ~61!

i.e., the change in the one-body~usual or the lowest order!
entropy per energy is equal to the inverse temperature. T
is, a greater change in entropy per energy can be achieve
a colder system; an intuitively reasonable interpretation
be rendered. A rigorous mathematical proof of Eq.~60! has
been carried out by Wolf@25#, in which a simple Ising mode
was adopted. In this system it can be shown that

1

n

]Sn
]E

5S 12
1

nD ]SI
]E

, ~62!

where SI[ limn→`(Sn /n). Thus (1/n)(]Sn /]E) is greater
for greatern in the Ising system. In Fig. 6 of our coolin
simulation when we employ a large number of colors, i.e
large dimension in laser phase space, the cooling is rapid
though the employed laser power may be considerable,
expended laser energy summed over all colors is far sm
than that needed for an individual laser light. We believe t
this is an observation of this principle, Eq.~62!.

In this paper we have introduced a general method for
phase space control of charged particle beams. We have
centrated on the properties of cooling a charged part
h
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beam and the method of kicking the beam given that a fe
back system with high enough resolution of the phase sp
of the beam is possible. We have not addressed the prob
of extracting the phase space information which in and
itself represents a formidable task. One of the problem
that of the large bandwidth~in our example in the text it is
about 10 THz@28#!, which requires excellent diagnostics an
computational techniques. Related to this problem is the
fuscation of the beam data arising from the incomplete
derstanding of accelerator structures. For simple manip
tions of the beam phase space not involving cooling such
beam shaping or bunching where the resolution and feedb
constraints are greatly relaxed currently available techniq
such as tomography@29#, or other methods can be used.
our next paper we will address this problem by looking
modern techniques of mapping the phase space distribu
from the synchrotron radiation reconstruction@16#, time of
flight methods@11#, and other recent progress@26#. In addi-
tion, we are developing feed-forward neural net predict
algorithms, based on~i! the inversion from the phase spac
moments@17#, ~ii ! the prediction of the observed beam flu
tuations, and~iii ! the inversion from the scattered laser ligh
an approach similar to Ref.@27#. In the future we need to
investigate a more rigorous~and orthogonal! treatment of the
phase space of photons. We then need to mathematic
formulate the observed phenomenon of entropy resona
which is conceptually distinct from the conventional wav
particle resonance. We further need to mathematically
mulate the ‘‘law of diminishing returns’’ in terms of higher
order entropy. These tasks may be repended ones to bu
foundation of structural statistical mechanics as oppose
the conventional~thermodynamical! statistical mechanics
We envisage that further studies in cooling of charged p
ticles beams via lasers will bring in not only a novel an
perhaps, more efficient cooling technique, but also allow
to learn the dynamics and needed mathematical tools to
lyze the internal structure ofG space for the manipulation o
the beam phase space.
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