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Phase space control and consequences for cooling by using a laser-undulator beat wave
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We present a general method to control the phase space structure of charged particle beams by both
Hamiltonian and non-Hamiltonian manipulations by employing multiple optical pulses. In particular, we focus
on beam cooling as an example of the method. In order to rapidly cool a bunched beam of charged particles,
one needs to introduce non-Hamiltonian manipulation of the internal structure of the phase space of the bunch.
A spatially dependent force, which cancels the velocity moment fluctuations arising from the irregularity and
granularity of the phase space, is shown to be effective in cooling the bunch. We introduce a method of cooling
by creating a ponderomotive force due to a beat between a laser and an undulator that are appropriately
adjusted turn by turn through feedback. If a high enough resolution feedback system can be achieved, this
results in a rapid reduction of the longitudinal emittance of the bunch with a corresponding increase in the
phase space of the scattered laser light. In this process we find that when the structure of the laser input is
matched well with that of the beam, a large amount of entropy transfer without much energy transfer takes
place(“entropy resonance), while when it is ill matched, no such entropy resonance takes place. We measure
the correlation dimension and higher entropy of the scattered laser light. It is found that both quantities are
useful for determining the amount of cooling. By combining an appropriately timed Hamiltonian longitudinal
beam stretching with the present cooling procedure, we can continue the cooling. Numerical simulation is
carried out to demonstrate this meth$81063-651X%97)08905-9

PACS numbdss): 29.27.Eg, 52.65:y, 42.50.Fx

I. INTRODUCTION difficulty is, even if we succeed in applying a non-
Hamiltonian interaction to the beam, teecond law of ther-
In charged particle beam acceleration the primary goamodynamicslictates an increase, instead of a decrease, in the
has been the increase of energy itself. This is obvious, as ttentropy, unless we do some extraordinary things.
spatial resolution of mattekr is related to the energy of the In order to cool beams, therefore, one has to introduce
beamE by Ar~7%c/E. However, in addition to this, the some elements of non-Hamiltonianness into the system in a
improvement of beam quality, such as emittance reductiongroper manner. Electron cooling of iofi§] and ionization
is also important. The control of the phase space structure Qfooling[6] are two methods that insert non-Hamiltonian pro-
the beam is thus the general problem we would like to adgesses and/or materials for the species of particles under con-
dress here. Phase space control includes coglingse space  sjgeration. Radiative cooling, such as with synchrotron radia-
volume reductiop stochastic beam stackind], stochastic tion, is a classic non-Hamiltonian cooling methpd. The

beam extractiorf2], suppression of instabilities from mul- .. popular method of laser cooling of atoms is based on

Eple beﬁm-beam mtter_?ct_mnsf or gead-taél I?fLetB$ ‘E‘;ﬁ manipulation of the internal structure of the atofhsving
eam phase space tailoring for advanced light SOUSES — g16c4rong circulating around the nuclewnd ultimately on

For this paper we concentrate on cooling of charge particl L " .
beams as an example of an application of this method. Th%he radiative energy loss by transitig8]. This method has

emittancee of the beam is the phase space volufearea Been applied to cooling heavy ions in storage rifgjsHow-

properly normalized. Thus its logarithm is related to the enEVer beams of charged partlclgs, such as elegtrons, mtions,
tropy of the beam. Emittance reduction is the problem of2"d Protons do not have an easily manipulated internal struc-
cooling. Cooling is not just a question of increasing the beanturé- The stochastic cooling methgtl0] was introduced to
energy, but that of reducing the beam entropy. reduce the phase space volume of hadron beams where other
Let us pose a question “Can one cool a beam whicteooling methods are ineffective by feedback. The recently
obeys Hamiltonian dynamics, since electromagnetic field®roposed faster optical stochastic cooling methddl] has
can be written in Hamiltonian form?” Electric field@nd been proposed for cooling lepton beams. In these methods
magnetic fieldsare functions of space only and not that of the feedback operates on the average positional deviation of
momentum. Upon application of an electric field on thethese particles.
beam, the area in phase space is unchanged. This illustratesIn order to find out how to break this difficulty and to find
the first kind of difficulty associated with cooling. Liouville’s a pathway to cooling, we consider Nrparticle system in
theorem states that W-particle Hamiltonian system pre- which the number of particles is conserved. Define a 6
serves phase space volume so that any external Hamiltoniaf-dimensional phase spa@he so-called” space probabil-
electric or magnetic fieldgtime dependent or independgnt ity distribution functionD(qq, ... ,dn,P1s - - -.Pn:t), the
would not cool a beam oN particles. The second kind of Liouville distribution function. The conservation of particles
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implies that the continuity equation in théN&imensional A similar more involved equation for the intrinsic two-body
phase space correlation functiong can also be obtaine@Gee[12]).
Typically the one-body entropy, which is defined as

JD
E'FV'(UD):O, (1)
S]_:_J’ dqldplfllnfl, (6)

whereu= ({q}n.{pi}n) is the &N-dimensional phase space . . )
flow velocity andV=({dq;},{dp;}) is the &N-dimensional IS used to determine whether cooling or heating has oc-
phase space gradient. If the flow in théN-@limensional curred. This is the conventional entropy and is related to the
phase space is incompressible, or equivalefitlyy which is logarithm of the emittance. Here we can define a higher
familiar for the condition of incompressibility in fluid me- Nth order entropy13] as

chanics, we have
» si=- [ dadpy . dadpifint,, @
—+u-VD=0. 2

ot where f, is the n body distribution function,

This is usually called the Liouville equation. The phasefn(d1:P1, - - .Gn,Pn) derived fromD. The higher-order en-
space incompressibility condition can be satisfied by thdropies are seldom studied in physics. It is important to un-
Hamiltonian dynamics(Hamiltonianness is a sufficient but derstand the properties of the laws that govern these quanti-
not necessary conditionin order to derive a basic equation ties. In fact it seems imperative to develop such theory for

which is suitable for cooling problems, general equations ofhe physics of the quality of energy and for a more sophisti-
motion for the particles can be expressed 4 cated modern information science. In such a theory the in-

terplay of various entropies at different hierarchies should

. _ o play an important role.
pi=X(i)+ 2 F(ij), 3 In Sec. Il we discuss a basic idea on how to cool a bunch

. by introducing a spatially dependent force that cancels the
. fluctuations through feedback. The method of laser-undulator
qi=Y(i)+Z G(i,j), (4) beat cooling is introduced in Sec. lll. In Sec. IV we demon-

J strate this method by a one-dimensiodD) numerical
simulation and discuss its limitations. We also examine the
properties of the laser light scattered from the beam. In the
final section(Sec. \j we summarize our results and discuss
f,=f,f1+9(q1.P1.0.P2:1), Whereg is the intrinsic two- the relationship between this light and the previously men-

body correlation function, yields an equation for a one-bod;}ioned higher-order entropies. We also discuss future areas of
distribution which can be written 44.2] research.

where X,Y represent external forces afdG represent in-
terparticle forces as well as self-interaction forces.
Integrating Eq.(1) over g,p,—qnpPn a@nd introducing

af, .\ A[X(1)f4] . A Y(1)f,] Il. COOLING BY A SPATIALLY DEPENDENT FORCE
at ELh ap1

Here, we consider a method to realize the control and
f4 cooling of the charged patrticle system discussed in Sec. I.
+ Na—j dg,dp,F(1,2f1(gs,p2,t) When we study the cooling of a charged particle system, the
1 introduction of the discrete nature of the particles is essen-

of, tial. As an example in which cooling can be accomplished,
+Na—f dqg,dp,G(1,2f1(d,,p2,t) consider a two-particle system. The discrete nature due to a
P finite number of particles leads to fluctuations that allows us
JF(1,Df,] IG(1,Df,] to get a handle on the “texture” of phase space to compress

= it. In other words, the cooling mechanism involves ‘“com-

9 Ps pressing the vacuum between particles,” which does not
d9(dy,P1,92,P2,t) contradict Liouville’s theorem as it assumesrearly con-
- Nf dgdp,F(1,2) aq tinuous phase space. This can be realized by applying a force
! that reduces the “distance” between these particles in phase
d9(01,P1.d2,P2,t) space. This is trivially accomplished for a two-particle sys-
- NJ doedp,G(1,2) ap; S G by aspatially dependentorce which accelerates the par-

ticle with lower momentum and decelerates the other particle
The terms on the left-hand sidéHS) are consistent with to bring them both to a zero momentum differerisee Fig.
incompressible fluid flow. The first two terms on the right- 1). By doing so, although the mutual spatial distance remains
hand sidgRHS) are non-Hamiltonian self-interaction terms, as before, the mutual momentum distance collapses and the
such as radiatiofi7] or feedbacK10]. The feedback may be overall phase space distang@ one may call the effective
looked upon as a time-retarded self-interaction, as the mont‘emittance” of this systemreduces. Of course a key ingre-
tored particle memory in thénearly collisionless system dient is that cooling is only achieved when we have infor-
will be fed on itself through the pickup circuit. The third and mation concerning the positions of the particles. An arbitrary
fourth terms represent microcorrelations among the particlespatially dependent force where we do not know the particle
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Ps where §f(z,0,t=0)=0, andfy(z,v) is the distribution mea-
clump sured before the application of the electric fi@ldz,t). We
or particle require that the first velocity moment of the distribution
A f(z,v,t) after application of E,(zt) vanishes; (vs)
\ = = i i
kickl),& rotation Juf(z,v,t)dv=0. This leads to the relation
AN
S é < ols z (vo)=—(v), C)
Z,
N
! dT where (vg)= fvfodv and (v)=fvfdv. The distribution
L. sz - & B of in Eq. (8), as a result of the application &,(z,t), is
P NN obtained as follows:
I<——-— AZinj —-l
ofg  ofy qE fy 96f d6f  qE 96f
FIG. 1. Schematic picture of cooling in two partidier clump ot " Voz T moaw T ot Yoz T m v
system @,B). Az,,; represents the initial real space spread and, by (10)

repeating the procedure of kick and rotation, two particles

clumpg can approach each other to an order of the scale length ofye |inearize this equation with the first term being zero,
the kick field. dropping the last term, and transforming to Fourier-Laplace

space
positions would not cool and most likely heat the system.

One can generalize this method to a systerhl afiscrete ikv~ a ofo(z,v) ~
particles or to a system with a continuous clumpy distribu-  ——fo(k,v) + 57‘1‘( E(zt) — — +sof(kv,s)
tion of momentum fluctuation. This is done by a spatially
dependent instantaneous application of a foFcgz) or — 5f(k,v,t=0)+ikv 5t (k,0,5)=0, (12)

equivalently an electric fieldg,(z), as shown in Fig. 2,

where the coordinate represents the direction of cooling. where 7 denotes the Fourier transforn denotes the
The kick will move a slice of the distribution vertically in the Laplace transformﬁ?(k,v,s) is the Fourier-Laplace trans-
phase spacéparallel to the momentum directipniThe kick ¢y ¢ sf(z,t) and  Sf(k,u,t=0)=0. Using
method might be considered an extension of van der Meer'sre(, 1)]= E(z)/,s ’ [if E(zt)= E(,z), for t>0 and
stochastic cooling methold.0] applied to a bunched beam. E(z t),=0 for t<0] and solvir'1 forof (k.u.s), we have

We consider utilization of a laser for this cooling method, —*’ 9 0S)s
because the wavelength of microwave radiation is too long to

apply to short bunched beams like those in electron or posi-  §f(k,y,s)= — ;

tron storage rings. We show here a mathematical procedure s(s+ikv)

to produce a spatially dependent electric figldz) from the q o o(z,0)

fluctuation pattern of the beam distribution. X —}'( E(z)L +ikvfo(k,v)]_
The method of cooling in real space @irection ex- m du

changes phase space elements by application of a spatially (12

resolved forceF,(z,t)=qE,(z,t). Let us consider the cool-

ing of a 1D system with distributionf, that is non- The inverse Fourier-Laplace transform yields
Maxwellian (including clumpy distribution. The total dis-

tribution f is q 1—exp(—ikvt) afo(z,v)
- - - @7 A
6f(z,v,t) mF { Ko E(2) 7
f(z,v,t)="fy(z,v)+ 6f(z,v,1), 8 )
(z0.t)=To(z,v)+ of(z,v.1 ® — F Yfo(kw)[1—exp —ikot) ]}, (13)
Pz where 71 is the inverse Fourier transform. The impulse

approximation meang—0, which yields I exp(—ikuvt)
—ikut. Therefore, the distribution after a ki¢n impulse is
1 1 obtained as

Wi -
T \W 5f(Z,U,t):_F1[%t]:(E(Z)%sz))]

E(2) — F Ut o(k,v)ikolt
fo(z, fo(z,

We impose our condition for feedbadlyq)=— fvdfduv.
FIG. 2. Momentum kick. This leads to the expression
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dfo(z, dfo(z, P
<Uo>:%tE(Z)Jv%dv-ﬁ-tjszdv, (®1, kp) i

Jz (3w1, k3)
(15

wheret is the pulse duration. We solve for expression of the

needed electric fiel&E(z) in order to make(vy)=—(v),

_71: |
obtaining I i
|
1

E(z)= m{vg) m 1 ,9fo(z,0)

Tt iney T 9 (o) v P dv. (16)
at(No) g {No FIG. 3. Odd higher harmonics of the fundamental laser
{{om=mwq,ky), m=3,5,7--2n+1} are resonant modes which

For impulseE(z) applicationt— 0, the first term dominates can also kick a beam in longitudinal phase space.

and, thus, we obtain
frequency and corresponding wave number; (K;), it is

E(z)=— m @, (17)  known that odd higher harmonics of the fundamental laser
qt (no) {(om=mw;,K,), m=357--2n+1} also become reso-
) nant modes. This feature is shown in Fig. 3. This is due to
where(uvo) and(no) are functions ofz. the nonlinearity of the field amplitude which originates from
the longitudinal oscillation with 1/2 wiggler period. There-
Ill. BASIC EQUATIONS FOR THE LASER-UNDULATOR fore, by precisely choosing the amplitude and phase of these
COOLING METHOD higher harmonic lasers as well as the interaction length, we

In this section. we present the mathematical orocedure ¢ realize an arbitrary spatially dependent field pattern trav-
’ P P g_ling with the beam particles. We let the laser carry the pre-

the laser-undulator cooling method presented in the prece L . . :

) . . . -~~~ Cise detailed information necessary to manipulate the internal
ing section. In Sec. Il B, we derive the basic equations hase space structure and the undulator provide a strong beat
which describe the self-consistent beat wave kick for the’ P P 9

. . . wave field without energy loss. A Bose condensated laser
cooling. Based on the equations in Sec. Ill B, we present a L .
: ! usually containing little entropytypically S ~kgIn10 close
method to determine the external laser fields from the ob; e .
. S . to the squeezed state or with little informatiaan wash out
served beam information in Sec. Ill C. We also discuss th ; . X
i - . . . - the much higher entropy of a charged particle beaypi-
conditions for providing an ideal kick which leads to effi- : . ,
) . cally S,~kgIn10'% with appropriately configured and re-
cient beam cooling. S '
peated photon-particle interactions.
The overall features of beam cooling in a storage ring

A. ldea of cooling by using a laser-undulator beat wave system is schematically shown in Fig. 4. Phase space infor-

The crucial question is how to realize a spatially depen-mation of the beantmore precisely in this case, the longitu-
dent correction force on a bunch particles. For most leptorglinal fluctuation patternis extracted at the pickup section.
storage rings, the necessary spatial resolution is far belowased on the extracted information, laser fields which have
microwave technology. An electric fiel,(z) =F,(z)/q (q:  Proper spectrum shagéke amplitude, phase, efc...) are
charge of particlewould be electrostatic and not practical as Programmed through calculations, so that the beam is cooled
an accelerator feedback component. Furthermore, the forcd the kicker section after the interaction. The laser figts
has to travel with the beam particles so as to be always iguperimposed laser wave padkisttransmitted to undulator
phase with the fluctuation pattetn,)(z) of the beam during
the kick. To realize such a force, we suggest the method of
the ponderomotive beat wave foridel] produced by a linear
undulator and a laser with a broadband spectrum which is
injected coparallel to the beam.

The basic idea of this method is as follows. The coupling
between a laser field with frequency and wave number
(wq,k1) and an undulator wittk,,(=2#/\,,) (\,,: undula-
tor pitch) produces a traveling ponderomotive potential par-
allel to the beam. The resonance condition of the pondero-  pick-up
motive potential with a beam particle of energys given by

scattered light

bunched
beam

phase space

information
| undulator

spectrum
K 2y? " 18) _ modulator
Taek2 ™

entropy ashcan

whereK=eB,,/\2mck, (B, : undulator magnetic fieldss
the so-calledK parameter. We choos&; and k, as laser wave packet

27/ (k,+ky)=t, (tp: bunch length of the beanso that the

beam bunch is trapped in the ponderomotive potential well. FIG. 4. Overall picture of laser-undulator beat wave cooling in
When the dispersion relation Eql8) is satisfied for the storage ring system.



5952 KISHIMOTO, KOGA, TAJIMA, AND FISHER 55

(or kicken by adjusting the phase with the beam orbit and PNz =t —(mT D)K. 72— asin2k. z 25
kicks the bunched beam. During the interaction, the beam Ym (29) = m= (M Lk " v (29
entropy is extracted by the laser fields. Namely, the scatterefihere . = my+ ¢(2) + 5y, ay=eA,/ME(=2K),
laser entropyi.e., photon entropyshould increase when the fim=eAm/rTlCZ, 7=K,2, RmO:wm/Ckwa and am:RmORZ/

incident laser correctly kicks the beam. This exchange of ™, . )
4. Here,y represents the phase of a particle with respect

entropy between the bunched beam and laser fields is act o : o
ally observed in our numerical cooling simulation and is dis-1© the_ fundamental ponderomotive field which satisfies the
equation

cussed in Sec. IV. It is also found that after interaction the
total power consumption of laser fields is extremely small 47 K

(almost zerg. Namely, although a certain amount of laser _':/’:1_ 0 (1+K?) (26)
power is needed to form the kick field, once the power is dz 2y '

supplied to the laser system, the scattered laser light can be .

recycled for the next kick, as shown in Fig. 4 by reprogram-with the initial condition(z=0)= — w to(=4), wheret,

ming the spectrum based on new information. During thejenotes the time that a particle is locatedzat0. ¢y(2)
reprogramming process, the increased laser entropy igpresents the shift of the laser phase due to the finite beam

thrown away from the system. current which satisfies
B. Basic equations dém -~ . N
. _ _ — = =kn—kno(= k), (27)
We investigate the present cooling method by employing dz

a one-dimensional linear undulator model which describes R

the self-consistent interaction between beam particles and lavith the initial condition ¢,(z=0)=0. Equation(24) is a

ser fields in the longitudinat direction[15]. We start from  nonlinear equation with respect to the laser amplitagelue

the situation where the laser fields and the undulator field to the longitudinal oscillation of the particle with period

A,, used for cooling the beam are given by w/k,, in the ponderomotive phase. This nonlinearity in the
laser amplitude allows resonance with odd higher harmonics

gy . A (3w1,5wq,7wq,...). This is seen by taking the average of
Az1) % Am(Z)singm(z,)8y , (19 Eqg. (24) over the wiggler period. The even harmonic num-
bers are found to cancel out and we are led to
Aw(2)=A,sSirk,ze, , (20) q
&y Gw Ko G m( ) SiNgs (28)
where the phase of the lasef,,, is given by dz 2B20Y miotd mo=m m
z , ) where _ Gm(am):J(m—l)/2(a'm)_‘](m+1)/2(am)aﬁzo
Pm(z,0)= JO Km(2')dZ' — ot + 6. (2D —\[1-(1+K?)/42 andm is taken to be an odd number.

Here,ty which gives the initial condition for Eq26) ranges

Here,w,,=mw, (m: integey is the angular frequency of the PeWeen—m/w <to<m/w,, , _
higher harmonics with respect to the fundamental angular TN€ transverse current of the beam is described by
frequencyw;. k,, and &, represent the corresponding wave

+ o0
number and initial laser phase. The Hamiltonian from which  J, (z,t)= _enbvbf Mqt— r(z,to)]dtoéx,
the equation of motion is derived is described by takirap — V(L)
the independent variable (29

N A T R > where vy=c\1-(1+K?)/y2,y,=1+E,/mc (E,: the

K==y~ )m’c*~[p, - (elo) A+ A, (22 beam energy n, the average beam density,

A s A . 7(z,tg) =to+ [3(1l,)dz, and v, (t,ts) the velocity of an
Whgre pi_(_px’py)A Is the transverse carmmgal momentumelectron at timet which enters the interaction region at
which are given by, =0 andp, = —Kmcsirk,zin this case. t=t,. Then, the field equations which govern the field am-
In Eq. (22), we neglected the space charge field. The abovgyitydea,, and the phase shift,, are derived from the Max-
Hamiltonian is equivalent t& = —p,= — ymv, (p,: the ca-  well’s equation in terms of the above nonlinear current as
nonical momentum iz direction and8,=v,/c is given by  follows:

1+K? K2 12 dan  yuBué’ < sing,) = sing, > (30)
=l1l-—5+— : IR ,
e R @3 dz 2kp By
The equation of motion is derived fromdy/dz dém  YoBy2 ay | cospty) —cosp')
=(1/mc®) oK/t as —=— — , (32)
dz 2k 8m Bzy

d_Z’: mcaNz ankno(SINGLH —simgl)), (24 Where Bbzvblc, é=wp/\ypCky, and w,=+4mny,e?/m.
dz 2K “m (Ay=(1/27) [ZTAdy represents the average of the beam
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particles over the fundamental ponderomotive phase. Then, ‘

by taking the wiggler average, EqR0) and (31) reduce to

dan ')’bﬁbgz <Gm3in¢m>
—— == , 32
dz 2Kmo 2 B2y 32
2
dd}’\m:')’b:?bg ﬂ<GmCOS/fm>. (33)
dz 2Kno @m Bzy

The set of Eqs(26), (28), (30), (31) [or (32), (33)] describe
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N

the self-consistent interaction between the multifrequency la-
ser fields and the beam particles which is essentially the FiG. 5. The fundamental pondermotive phase broken up into

same as the free-electron lagEEL) description.
In deriving Egs.(30) and (31), we assumed periodic

n slices withN; particles in thejth slice.

boundary conditions for the fundamental ponderomotiveyf  (and theny) during the kick. Note that sincé(£) is

phasey. Therefore, the beam density, in Eq. (29) is given

by n,=N/\,, whereN is the particle number per bunch and

Np=2ml(kiotky) is the wave length of the fundamental

chosen so thaff(£)z=48y from Eq. (35), ex=f(&)/yin;
~(5ylyini)Z=€ when the interaction lengtz is chosen

ponderomotive potential. In the case of a storage ring whictf~ 1. By substituting Eq(36) into Eq. (28), we are led to a

circumference isL, n, is given in terms of the average
beam currenl,, as

Jb L

nb:|e|vb ApMy’ 34

whereM,, is the number of bunches in the ring.

C. Determination of the kick field

In this section, we provide the procedure to determine the'

solution up to first order ire as follows:

zsin(mé+ 5,,)

YZH6)=Yn+ > Fn
m(odd)

m .
2

—€Z2°+

7 €1

m .
~ 6223+

+
3

Ko
Tzz) cogmé+ 6m)} ,
(39

where we assumed that the shift of the laser phageis

laser amplitude and phase from the information of the flucSIMPly estimated byy,=dknz<0O(¢). As we discussed
tuation pattern of the beam bunch. Here, we begin by solvingbove, sincef(£)=—38y/z and e,2°= — (5y/ v,ed 2%, then
Eq. (28) order by order assuming the smallness parametdrq. (39) is rewritten as

€~|¥ini— Yred! ¥ini<<1, Where y;,i=y(z=0) is the initial
particle energy andy, .= Vkio(1+K?)/2 is the resonany
which satisfiesjE/dAFO. Keeping the zeroth order solution
with respect toe~|8y|/vini (8¥="ini— Yres), by taking
v=%ini and = &(=cons} on the RHS of Eq(28), we sim-
ply obtain

YO Z €)= yim + Edd) FuSiNmé+ 8z, (39
m( o

whereF = —[awamKmoGm( ¥ini)/28:( ¥ini) 7inil- The solu-
tion up to the first order with respect to is obtained as
follows. Equation(26), the phase of the test particle, is
solved by employing the zeroth order orbit E85) as fol-
lows:

Y=+ €2+ .22, (36)
kio(1+K?) 26
=1 2o, @
R 72
., Fu1+R )f(ﬁz(l_ZM)f(@zf(%), -
2%ni Yini Yres/ Yini  Yres

wheref (&) =2, Fsin(mé+ &,). The third term on the RHS

zsin(mé+ 8,

Y2 B8 =Y+ > Fnm
m(odd)
2

+ §m(

Here, we divide the fundamental ponderomotive phase
into n slices in which the beam bunch is located as shown in
Fig. 5. We assume that there a¥e particles in thejth slice
and the total particle number in the bunchNs= E}‘;&Nj.

Let

oy
Yres

K

5 ZZcogmé+ 8

+

(40)

N;

<57>j:izl

Yi

N_j — Yres (41)

be the energy fluctuation in th¢h layer which is in principle
experimentally observabld.6,17. Here, the average, i.e.,

y= (1/n)2}‘;012iN;1(yi IN;) is identical toy,es since the fun-
damental laser wave numbky, is determined by the rela-
tion kyo=27?/(1+K?). The laser amplitude and phase are
determined from Eq(35) by neglecting the change of the
phase as follows. That is, by taking(z,&) to Yres @and av-
eraging Eq.(35 with respect to particles in each slice, we

in Eq. (36) represents the deviation from the straight motionobtain



5954

(8y); =m(%® (Hmy;Sin(Mé; + 8pn), (42)

where §;=27j/n and (Hy,);= —Ei'\':ilFm(ymi'i)/Nj . Here,

(Hm)i=Hm(7red (=—Fm(¥ed2) is assumed. Therefore,
for the observed fluctuation profikgdy); in each slice, the
amplitudeH ,, and phasé,, are determined through the Fou-

rier transform relation. Note here that since the even harmon=

ics are excluded in Eq42), the reconstruction of the fluc-
tuation profile in terms of the Fourier amplitude and phas

ever, the incompleteness can be minimized by the followin
discussion. The wave amplitudg, and phases,, are ob-

tained in terms oH,,(y,es) and the interaction Iengtﬁ, as

a,= a< 2Bavredim| (43)
auKnoGmz
5. =tan ! FW&y(g)cosmgdg/ fﬂTéy(g)sinmfdg} ,
(44)
where EO::BZ o(Vres)» H_m:Hm('Yres)- and G_m

=Gm(7vres)- @ is an adjustable parameter to {éty); tend to

zero[18]. Due to the lack of even harmonics in the laser

field, the coefficiente, which vanishes the fluctuations, is
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e
by employing only the odd harmonics is incomplete. How-

3
2mz

(0%
Yres

<

(46)

In obtaining Eqg.(46) from Egs.(42) and (45), we estimate
(87); simply by(J8y)y,, where(dy); in Eq.(45) is estimated
by the average beam energy spréag)y . It is found that a
shorter interaction distance allows a larger initial energy
spread and large scale fluctuations, which have a small
number, also allow a larger energy spread. This result indi-
cates that sinc€dy)y/v,es becomes smaller with cooling,
once the condition given by E§46) is initially satisfied for
he largest scale fluctuation, the small scale fluctuations
hich have the largem number satisfy the condition Eq.
(46) and can be continually cooled.

The kick of the beam is also modified through the change
of the wave number of the laser field in the higher beam
current and/or density case. The condition on the beam den-
sity for an ideal kick is also estimated from E¢6) and Eq.

(33 as
2
2 @b <
£ ( Bl chzkgv) (

where(cosj,)=1 is assumed in Eq33). By employing Eq.
(43), we rewrite Eq.(47) as

4RmO Yo
Z2Gp

am
Ay

; (47

(48)

ideally given by 2, but adjustably chosen by taking into ac-

count the effect of the phase change. In E&B) the laser
amplitude is inversely proportional and can be reduced

where the density limit is proportional t@ﬁliz.
Once the fluctuations are eliminated by the above kick

by taking a laser interaction length short. However, the amprocedure for a particular turn, fluctuations are bound to be
plitude as well as the interaction distance has to be chosen $aduced by the phase space rotatidn(/C;P). Additional
that they satisfy the ideal kick condition, as discussed in Sednducement may come in through nonlinearities of the mag-
I A. nets and rf waves and through other Hamiltonian elements to
(deliberately induce fluctuations. Thus, the laser fields are
adjusted turn by turr(or in a whatever necessary perjod
based on the induced fluctuation pattern to match Ef.
Here, we consider several mechanisms which preverdnd (44).
beam kick from being ideal within the present framework.
First, the second term on the RHS of E§9) [or Eq. (40)]
provides a limitation on the ideal kick condition. Since the
kick field is determined by neglecting the terms which are
proportional to costé+am) in Eq. (40), the deviation(or
erron of the average energy of theh layer from y= y,qq
after the kick,A y¢, is estimated by

W

D. Constraint for an ideal kick

IV. NUMERICAL EXPERIMENTS

As a demonstration of the present cooling method, we
show a numerical example in the case of a shortly bunched
electron beam in this section. Typical beam parameters are
the beam energyE,=200 MeV (y,=392), the bunch
length 1,<0.2 cm, the initial beam energy spread
Ayl y,=3%), and the beam curred=0.5 A/cn? (the av-
erage current density in the storage ridg, is given by
Jp=Jp[ (A\;Mp)/L]). From the bunch size, we determine the
fundamental laser frequency as/27=150 MHz so that
N=2mlwq)=l,. The undulator is designed so that
Aw=0.984 m andB,=3.85 KG, where the corresponding

ballistic phase change due to the mismatch betwegpand K Qarameter i =25 and the interaction length is chosen to
the average particle in each layer. The second term repre- b€z= m (half undulator pitchin the present simulation. We
sents the shift of the laser phase due to the finite currerifitially provide the beam distributioffy, in the fundamental
effect. In the small current limit where the laser amplitudePhase space according to

a,, and phasep,, are not changed during the kick, the con-

K|~
—"Z2cogmé+ 8y,

2
(45

<A'Yerr>j:% Fm[

res

wheref (&) in Eq.(38) is estimated by (&) = —(57y); /z. The
first term of the RHS in Eq(45) represents the effect of

o : - - : N v (y—m)?
dition for energy spread to realize an ideal kick cooling fol(y, )=—9XF{ — — . (49
by this method is given by 570 2moy0, 203 207
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Np=8(n=32)

(i 1.0 3 -
S NL=16(n=64)
- Ml
® N o0 ' © oy N =32(n=128)
400 4 = : T
E AN, E 0 2000 4000 6000
> 390 4 ’ A - N (o)
380 : : ‘ 3 )
. ) . FIG. 7. Emittances=o,0,/my, as a function of turrN for
4004 (© N=6000 3 slice numbeMN, =32, N, =16, andN, =8.
3 3 —_— e~ o~
= 301 3 dence of the normalized emittanee oo (= 0,0,/ 7yp)
380_ ] is shown in Fig. 7. The emittance is rapidly reduced with
- ' 0 ‘ + turns almost following an exponential dependence up to

3 N=1000-1500 and then the cooling rate becomes smaller.
At aroundN=6000 turns, the emittance is found to be re-
FIG. 6. Particle distribution plot in phase space at three differeniduced to about 1/50th of the initial one.
turn  numbers. (A set of parameters, E,=200 MeV, Figures 8a) and 8b) show the fluctuation pattern
Av7ini=0.03, lp=2 mm, ;=150 GHz, \,,=0.984m,  Bw  (5y),/7, before and after the kick &i=1000 turns which
=3.85 kG K=25 andéz=m were chose) for particle distribu-  corresponds to Fig. (B). The corresponding adjusted beat
tion (a) turn N=1, (b) N=1000, and(c) N=6000, respectively. field to kick the beam and minimize the fluctuation given by
Fig. 8(@) is shown in Fig. @a). The power spectrum of the
whereo, and o, are the standard deviation of the bunch inlaser field is also shown in Fig.(§. After the kick by the
the phase and longitudinal energy directions and thereforeeat wave[Fig. 8(b)], the fluctuation level is reduced com-
0,0, represents the longitudinal emittance. pared with the one before the ki¢kig. 8@)]. By that turn
It should be noted that with the current simulation param-number (N=1000), large scale fluctuations which corre-
eters and necessary resolution for cooling a resolution ofpond to lower mode numbers have been removed. The
~30 um or an equivalent bandwidth of 10 THz is needed higher mode numbers in the power spectrum are dominant
in the pickup or detector of an actual system. Although sucHor the correction of smaller scale fluctuations. The turn
resolution is not currently available, it may be possible vianumber dependence of the laser power is illustrated in Fig.
time of flight methods[11] or other means which we are 10, for them=15 mode 108) and them=45 higher har-
currently investigating. We want to demonstrate the beafhonic 1db). Since the fluctuation pattern of the beam

wave method as a proof of principle and examine the consechanges turn by turn, each mode amplitude shows stochastic
quences for cooling in having such a system. oscillations. Each mode amplitude is also found to decrease

with cooling by an almost exponential dependence in correc-
tion with the beam emittancéig. 7).
A. Beam phase space Figure 9c¢) shows the difference of the power in each

. . o . (a) (a) i —p@_ p(b)
Figure &a) shows the initial particle distribution in the Mode afterPy” and beforePr the kick 5Py=Pr’—Pp.
fundamental phase space. First, we show the case in whidRu€ to the kick by the beat wave, the fluctuations are found
the fundamental ponderomotive phase is divided intd® Pe reduced. As seen in Fig(by, more laser power is
n=128 slices andN, =32 odd harmonic lasers are em-
ployed. In the simulation, the beam bunch is kicked by the 01 1 s .

adjusted laser beat wave by the half undulator pitch so that i@ before kick ¢
the fluctuation inside the beam is minimized. The above kick -

process is repeated by renewing the laser fields turn by turn, < 04 3
modeling the storage ring as a simple Hamiltonian rotation in E 3
phase space. We assume in this simple model that the ring is 0.1 7 T . r F
dispersionless. In a real machine the dispersion among other 0.1 37555 : : af‘m "

effects plays an important role in the beam dynamics, but in 3 3
this paper we concentrate on the interaction. A proper beam 5 94 3
rotation in phase space is applied for each turn around the ;

beam center to extract the fluctuation from the beam for the
o axis. The particle distribution and density contour plot
afterN=1000 turns and\= 6000 turns are illustrated also in - 0 g+

Figs. 6b) and Gc), respectively. It is found that the beam

bunch is rapidly cooled down on a turn by turn basis both in  FIG. 8. (a) and(b) are fluctuation patterfidy); /y of the beam
the phase and energy directions. The turn number depemefore and after the kick, at the kick at tux= 1000.

'O. 1 T T T
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FIG. 11. Particle distribution plot of the beam aftdr=6000
m (mode) turns when(a) 32 odd harmonic laserst{=1-63), (b) 16 odd

) harmonic lasers ffi=1—-31), and (c) 8 odd harmonic lasers
FIG. 9. The beat wave patteif@ at turn N=1000 is shown. (m=1-15) are employed.

The power spectrum of laser fie(td) at turnN= 1000, and(c) the
difference of laser power in each mode afRff and beforeP?) s transferred to the laser fields during the interaction and
the kick (8Pn=P{—PQ). then the scattered lasésr photon entropy is increased, as
we discuss in Sec. IV B.
required for higher mode numbers for correction of smaller Here, we investigate the dependence of the cooling effi-
scale fluctuations. Furthermore, it is notable that while theciency on the number of higher harmonics of the laser. In
change in the laser power spectra is small but finitéFig. 11, we show a particle distribution plot of the beam after
(|6Pm|~1—300 Wicnf) and, in fact, can be used as a di- N=6000 turns when we employed 16 odd harmonic lasers
agnostic tool for next kicks, the change in the total lasedm=1—31) [Fig. 11(b)] and 8 odd harmonic lasers
power before and after the kick and, thus, the overall powefm=1-15) [Fig. 11(c)] which correspond tm=64 and
consumption are extremely small. This result indicates thanh=32 slices in the phase space, respectively. The turn num-
cooling takes place by exchanging the fluctuations and ranber dependence of the emittance for the 16 and 8 harmonic
domness in the beam particles with the laser fields by simplyaser cases are also shown in Fig. 7. It is found that the
rearranging the power spectra. Resultantly, the beam entrompoling rate and/or efficiency strongly depends on the num-
ber of harmonic lasers and the slice which corresponds to the
precision of the beam diagnostics in the phase space. As

108 ! : ’ ' : E discussed in Sec. Il D, the ideal kick is also modified by the
& change of the wave number of laser when the beam current
5 E* and/or density becomes higher. In Fig. 12, the turn number
3 E dependence of the emittance for the case of an average beam
2 r
=
o L L L ' 1
NpL=32
L 1.0 - -
108 § ‘b; 0 Jp= 50A/cm?2
—~ 3 ! ‘b —
(\,‘E 106 3% 11 l Jp=5A/cm?
= ' “w —
© 104 0.1 et
£ Jp=0.5A/cm?2 P
ay
102 T T T T T
_ 0 2000 4000 6000
0 2000 4000 6000 N (turn)

N (turn) . . .

FIG. 12. Emittancee=o,0,/my, as a function of turn

FIG. 10. Turn number dependence of laser power of e N for slice number N =32 with beam current
m=15 mode andb) the m=45 higher harmonic. J,=0.5 Alcn?, 5 Alen?, and 50 Alcr.
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1 1 L 4 1 1 1 L L 1 L H u
400 4 (@) Tp=0.5A/cm? E (@ N=500 - 1
3 £ 2 ER E—
> 390 4 3 g 0 3 o ‘ 3
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FIG. 13. Particle distribution plot &= 6000 turns for current " L
(@) Jp=0.5 Alcn? and (b) 50 A/cn?. © N=500
10-5 rro T o e T LI
Y 0 2000 4000
current ofJ,=0.5, 5.0, and 50 A/ckare also shown. Note N(mm)()ooo

that the mapM(K;P), phase space rotation angle per inter-
action is different from previous cases to accentuate the dif- £ 14 plot of A, .Aa,/a,) at turn N=500 (a) and
ferences between the 0.5, 5.0, and 50 Af@ases. The par- N =5000 b for N, =32 case. To increase the statistical accuracy,
ticle distribution plot atN=6000 turns is shown in Fig. (A¢, ,Aa,/a,) over the region 256N<750 (a) and
13(b). Although the initial cooling rate which shows an ex- 4750<N<5250 are simultaneously plottett) Turn number de-
ponential dependence does not change as seen in Fig. 12, ityéndence of the effective laser interaction temperature
found that the cooling efficiency afted=1000-1200 be- o =0,0,.

comes lower and is almost saturated. The decrease of the

cooling efficiency is considered as follows. In the present, in Eq. (43), i.e., a=1.0(1) and «=2.5(1). Note that the
method strong cooling of the beam is accompanied with conyalue of a larger thana=2 provides an over kick as dis-
traction in the phase direction and the beam density becomgg;ssed in Eq(43). Even though the individual phase and
higher. As a result, the interaction between laser field an%mp“tude are tuned, if they are over kicking, as demon-
beam particles becomes strong and the laser field pattergirated in(Il) in Fig. 15a) and 15b), no significant heating
which is initially adjusted, is modified during the kick due to of the laser and therefore no significant cooling of the beam
the change in the wave numbék, in Eq. (45). In the  as a whole takes place. In the conventional wave-particle
present case, a laser field with the lower mode numbefhteraction, when the wave is in resonance with particles
(m=1-15) is found to gain energy from the beam particles“the wave-particle resonance; energy exchangdE be-
Then, the ideal kick of the beam which leads to cooling istween the wave and particles takes place. However, entropy
prevented. exchange\ S may or may not take place. For example, in the

simple case of Landau damping of a single small amplitude
B. Laser phase space

In Fig. 14, we show the laser phase space where the 4 bt 4 bl
change of laser phas¢, and amplitudea,, for one turn 3 3 { (D a=19 3
obtained from Egqs(30) and(31), (A ¢,,Aay,/ay), are plot- 23 3 2 3
ted atN=500[14(a)] and N=5000[14(b)] for the N, =32 T 01 SN 2
case. When the irradiated laser structure is in a reasonable = o ] ] = , 3
match with the internal structure of the bedto the mth E 3 i : O
ordep, rapid cooling of the beam and rapid entropy increase 4 i e 4 Srer———
of the laser light simultaneously take place, a resonance phe- e 4 el
nomenon of entropy. This is also confirmed in Fig.(d4 o] Ma=23 ] ) @ 0.=25 i
which illustrates the turn number dependence of the root - ] 2 ]
mean square (rms) of the phase space distribution 204 * 3 ? 0 * 3
0. =0,04[(04,04): rms in Ady,Aan/ay)], showing an = 5 k. F = o ] 3
opposite dependence from that of the beam emittiRiap % i 3 . E

7]. Namely, the reaction of the laser fields with the beam
increases with a decrease of the beam emittance, indicating a
diminishing returnin the cooling system. Note that the in-
creased laser entropy is taken out from the system on each (a) NL=32 case (b) NL=8 case

turn because the laser fields are renewed turn by turn based

on the beam fluctuation diagnostics. In Figs. 15, we also FIG. 15. Plot of A¢,,,Aa,/a,,) during 1=N<5000 for dif-
show A ¢,,Aan/ay) plot for N.=32[15@)] andN_ =8 ferent value of field strength paramete=1 (1) anda=2.5(1l) in
[15(b)] for different values of the field strength parameterthe case oN, =32 (a) andN, =8 (h).

4 2 0 2 4 4 -2 0 2 4

102 Aapy/am 102 Aag/am



5958 KISHIMOTO, KOGA, TAJIMA, AND FISHER 55

1000
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FIG. 16. The correlation integralC(r), is
plotted for various delay vectors consisting of
(Ady,Aay,/a,) for the longest wavelength
—o— 60 delay ] mode M=1).

--®--70 delay

—&— 40 delay

—— 50 delay

100 1000 10° 10° 10

wave, we note thahE#0,AS=0, and thus|]AS/AE|=0. wherev is dimension of attractor. To find the exponenof

On the other hand, in our case when the wave structure ia particular curve we calculate a local value of the slope of
well matched with the internal phase space structure of thih(C)/In(r) between neighboring poinfd9]. To find the di-
particle beam, even though the energy exchange between thgension of the time series one increases the dimension of the
waves and particles is negligibla E~0), a large amount of  vectors X; ,X; until the calculated dimension approaches
entropy exchange AS#0) may take place, i.e., some asymptotic limit. It has been shown that because of
|AS/AE[~<. We call this later phenomenaentropy reso-  artifacts in this measurement technique, it is a rough measure
nance(in contrast to the conventional wave-particle energyys the underlying dimensionality of a system, but one can tell

resonance at least whether the system is completely random or very low

Next we examine the dimensions of the scattered lighlyensiona[19]. For purely random noise increases with-
when cooling occurs in the beam. This is done by calculatln%ut bound as the dimension of the vectofs,X; are in-
the dimensionality of the attractor of the time series Ofcreased !
(A¢,,,Aay,/ay) - The dimension of the attractor indicates ) : . . .

. We calculate the dimension of the time series of
the degrees of freedom of the system needed to specify thA¢ Aa, /a,) for the shortest and longest laser modes of
m: m m

state of the systerfil9]. It is the number of degrees of free-
ysterio] 9 total of 32 modes used to cool the beam where a total of

dom realized by the dynamics as opposed to the underlyin . X X . ; :
physical degrees of freedofd]. 184 simulation particles is used. The time series for each

To calculate the dimensionality of the attractor for a timeM0de consists of 6000 data points. Figure 16 shows a plot of

series we use a variation of the method of Grassberger arfd(") for various delay vector lengths for the longest mode

Procaccig20,21. In this method one calculates the correla-US€d to cool the beam. It is apparent that there is not a single
tion integralC(r) power law which describes the curves. It is known that

strange attractors have a wider range of scaling properties
1 o than can be described by a single exporié8i. The curves
C(r)=limSz X{ number of pairsi,j) level off for larger due to the finite length of the time series.
Figure 17 shows the local slope for each of the different
whose distanc@(i—xj| is less than}, (50) delay curves in IFC(r)])/In(r). It is apparent that as the delay

is increased the local slope also increases until the number of

where them dimensional delay vector¥; and X; are con-  delay vectors is 50. At this point the curves for 50, 60, and
structed from the time series 70 delay vectors converge. The curves indicate that the
maximum dimension is between 30 and 40. For the shortest

Xi= (), f(ti— 1), f(ti—27),f(ti=37), ... f(ti—m7)), wavelength mode the local slope[@{(r)]/In(r) increased

(52) without bounds as the delay was increased indicating that the

dimension of the time series was close to that of white noise.

Xj= (1), (=), 1t =27), 14 =37), . f( mr()5),2) The reason for this difference in the dimensions between the
modes is the fact that the beam has been cooled substantially.

where the indices,j refer to different times in the time TO the long wavelength mode the beam looks more like a
series. The dimensiom of the vectorsX;,X; must be single particle and, therefore, the dimensionality reflects the
greater than the dimension of the attractor. We want to find &umber of laser wave modes used to kick the system. In this
power law of the form case 32 modes were used. When we calculate the dimension-
ality of the system using the shortest wave mode, more of the

C(r)=(r)”, (53)  fine scale internal structure of the beam is seen. On this finer



55 PHASE SPACE CONTROL AND CONSEQUENCES FOR ... 5959
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30 [ i
FIG. 17. Local power law fit for the longest
) wavelength mode t&€(r) for the various delay
vectors vs(r/rq), wherer, is an arbitrary nor-
malization distancey is the power law exponent,
and the embedding dimension is twice the num-
ber of delay points used, since both
(A, Aay/ay,) are used. The dimension is de-
termined when curves of different delays con-
verge to the same values. Convergence occurs be-
tween 50 and 70 delay points giving=30—40.
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scale the actual degrees of freedom of the beam from thehrough the Kolmogorov entropy22]. First we need to de-
number of particles in the system is reflected. High dimenfine a quantityK,, as
sionality for the shortest mode indicates that it is still useful

for cooling. It indicates that there are fluctuations which can _

be eliminated. The low dimensionality of the longest mode Kn= L 2 i Pig.iaPig, i (54
reflects that cooling is hard to perform since internal fluctua- o

tions have been eliminated at these scale lengths. It is appagnere Pi,....i, is the joint probability that a trajectory
ent that as the emittance of the beam is reduced the dimen- L i . . ,
sionality measured by the short and long wave mode shoulﬁ(t)_[xl(t)’ .- X4(t)] in a d-dimensional space which

approach each other and simply reflect the input degrees @S been partitioned into boxes of site wherel is the
freedom from the laser light. Physically, if the beam hadprecision, follows the sequence(t=0) is in box
been cooled to zero emittance, then it would look like ai,, x(t=7) is in boxiy, . . ., andx(t=n7) is in boxi,. This
single particle of charg®l, whereN is the number of par- quantityK,, is the discrete time dependent equivalent of the
ticles in the beam. When the beam is a point particle, all thenigher-order entropyS,, in Eq. (7) where the phase space
laser modes cannot make any internal structural changes t@riables are replaced by points in a time series. The Kol-
the beam. Since the beam is kicked by the incoming lasemogorov entropy is then defined by
light, the dimensionality or degrees of freedom of its motion
is determined by the number of modes input. P Nt

When the particle number of the simulation is increased=lim lim lim == 2, (Kni1=Ky), (55
by four times a slower cooling time and, therefore, larger ~ 7—01—0 N—= " 71=0
emittance for the beam after the same number of kicks, 6000
is observed. For the longest mode we get a dimension of _ lim lim_ fim i 2 P.
around 25 to 30 and for the shortest mode we get a dimen- — 70 150 Noe NTig, T i
sion of around 60 to 70. To the long wavelength mode the (56)
beam again looks more like a single particle and, therefore,
the dimensionality reflects the number of laser wave modeghere it is defined as the average rate of loss of information.
used to cool the system. When we calculate the dimensiorggr regular motiork =0, for chaotic motiorkK >0, and for
ality of the system using the shortest wave mode, more of theandom motionK—c. In practical terms th& entropy is
fine scale internal structure of the beam is again seen. Howifficult to calculate. However, a much easier quantity to
ever, in this case on this finer scale the fluctuation level igalculate, known as th&, Renyi entropy is related to the

lower due to the larger number of particles. The randOfTborrelanon integralC4(€) calculated previously23]
fluctuations or coarse grained structure has been pushed to a

smaller scale size due to the addition of particles. On the 1 Cqle)
same scale length compared with fewer particles the phase Kaa(€)=—Inz Carale)’ (57
space looks more “fluid” like. So the dimension measured d+1
lfgtri(t)rrl:s mode is less than that measured in the previous simu- Ko= lim Kay(e), (58)
. Ao
We can further analyze the characteristics of the scattered ( HO)

laser light by looking at the entropy of the light. The corre-
lation dimension of the time series of the scattered laser lightvhered is the dimension of the space in which the correla-
can be related to the concept of higher-order entropy(Bq. tion integral is calculateds is the size of the region of phase
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FIG. 18. MaximumK ,q entropy plotted vs the dimensiahfor FIG. 19. MaximumKyy entropy plotted vs the dimensiahfor
(a) long wavelength an¢b) short wavelength. White noise is plot- (&) long wavelength angb) short wavelengthy= 2.3 (no cooling.
ted for comparison. White noise is plotted for comparison.

space, and/_ is the correlation exponent which characterizestraction (fast cooling. As is apparent from the figure the
the dimension of the attractor. It has been shown that short wavelength laser is extracting information at the fastest
rate. Another feature is the structure in both the long wave-
length and short wavelength entropy. The white noise en-
tropy smoothly decreases with increasing dimension,
whereas the scattered laser light shows jumps in the entropy.
In Figure 18 we show the maximuif,y entropy calcu- For some values the entropy extraction rate is very high. In
lated using Eq(57) from the correlation functiol©4(e) for  Fig. 19 we show the maximurk,4 entropy versus the di-
all values ofe versus the dimensioth. The two cases shown mensiond for the long wavelengthl19(a)] and short wave-
are from a cooling simulation for the long wavelengthlength[19(b)] for a noncooling cas¢a=2.3 in Eq.(44)].
[18(a)] and short wavelengtfil8(b)] laser modes. We plot We plot the cases versus calculation of the maxinigg
the K,4 entropy calculated for white noise as a comparisonentropy for white noise. It is interesting to note that for the
It can be seen that as the dimensibris increased the en- long wavelength mode the entropy nearly overlaps the en-
tropy decreases for all three cases. Kig entropy indicates tropy calculated for white noise. Also the corresponding lack
the rate at which information is lost or, in our case, the rate aof structure is apparent. In the short wavelength case there is
which information is extracted by the laser beam. Low val-still structure, indicating that cooling is still occurring for the
ues indicate that information is being extracted at a slow rateshort wavelength mode. This would not have been apparent
whereas high values indicate a fast rate of information exeonly using the usual one-body entropy calculation.

K,<K (59)

and for typical cases is numerically clogz8].
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V. ENTROPY AND COOLING tion and related higher-order entropy.

. - . The reason why we need to introduce such a tool may be
We summarize some of the findings in the computer. . S .
. ] : : illustrated by the following simplified example of magnetic
simulation of our cooling method by arranging the laser

) g . tapeq 13]. Think of a bad quality tape which contains noise.
modes to manipulate the inner structure of the beam in Sec;l.hpiS tape does not contgin in%orrgation Think of another
IV as follows. '

i . tape which contains a poem. This tape contains a large
(1) When cooling of the electron bunch takes pl&B&.  amount information of high quality. Consider a third tape

6), reduction of the area in phase space of the electron buncfjich is blank. This tape contains no information, but is
is accomplished by an increase of the area in phase space @herent. According to Shannon’s entrdjyi] which is dis-
the laser photoniFig. 14 and Fig. 18)]. This happens when crete equivalent to the one-body entropy in E).(related to
the imposed laser patterf(ay,¢n)} is matched well with  the one-body distribution functiorand is a measure of in-
the internal structure of the beam. On the other hand, if wdormation, the entropy of the noisy tape and that of a poem
choose the laser to over kicki(greater than 2 the matching  are high. Shannon’s entropy cannot distinguish the informa-
is not good and neither the reduction of the area in beantion of the noisy tapduseless or noneand the poetic tape
phase space or the increase of that of the laser photons o@seful and rich One may also argue that both the blank
curs as much as in the above céBay. 151)]. tape and poetic tape are coherent, while the noisy tape is
(2) As shown in Fig. 7, the cooling time sensitively de- incoherent. Once again Shannon’s entropy fails to carry such
pends on the number of colofmodes of the laser imposed: @ distinction. In order to remedy this difficulty, higher-order
the greater the number of colors, the quicker the cooling is€ntropies, based on higher-order correlations, have been in-
This means that the finer the detail of phase space is resolvdtpduced[13]. These quantities are based Brspace quan-
and thus manipulated, the faster the reduction of the phadéies and dynamicgand their distribution function®> or
space volume is. f,). The usefulness of the higher-order entropies is made
(3) As the number of turns of the electron bunch in theapparent in our calculation of th€, entropy. By calculating
ring increases and its cooling proceeds, the increase in tH8is quantity the noisy tape, blank tape, and tape with poetry
area in the phase space of the laser light becomes greate@n be easily distinguished by examining the variation of
[Fig. 14(c)], while the decrease of the area in phase space df> Wwith increasing dimensior{longer correlation timgs
the beam slows dowfFig. 7). This means that it becomes When we examine the scattered laser light, random white
more difficult to cool cooler beams and takes more effortnoise can be distinguished from cases where cooling is oc-
(and thus entropyto accomplish the same amount of cool- curring due to the structure observed at higher correlation
ing. dimensions. Particularly in the case of overkicking, the dis-
(4) The dimension of information contained in light scat- tinction from white noise is only apparent when the higher
tered off the beam is dependent on how much cooling hagimensional entropy is calculat¢gee Fig. 1€0)].
taken place. The dimension associated with short wavelength The probability distribution function il” space forN
light is greater than that with longer one and it asymptotes'particles” (or 6N degrees of freedomis given by
toward the number of independent modes of laser light thabPu=fy(d;,p;,02,P2, - - - ,0n.Pn,t) @s in Sec. 1. Cooling,
are imposed externally by our algorithm. This means that théhe reduction of the aregor volumeg of phase space im
scattered light sees detailed dynamics of internal structurgpace, corresponds to a “bundle up” of scattered vectors in
that is coarse grained from the systemNbiindividual par- I space. If this bundle up loses spread in doe more
ticles down to the number of degrees of freedom that igarticular directiofs), this corresponds to losing of dimen-
roughly equal to the dimension. The shorter the laser wavesions inl" space. When the cooling proceeds in our measure-
length, the more minutely it can resolve in phase space. mentin Sec. IV, the dimension of the laser light has reduced.
(5) When the higher dimensional entropy of the scattered Another way to look at the higher-order entropies from a
laser light is calculated, it is found that when cooling occurs phase space point of view is as a representation of the beam
there is structure. That is, the entropy fluctuates with dimenemittance in higher dimensions. As was mentioned in the
sion whereas white noise smoothly decreases with increasirdgeginning of Sec. | the logarithm of the beam emittance is
dimension. When no apparent cooling is occurring, the enrelated to the entropy. The higher-order entrogsn Eq.
tropy calculated from the scattered laser loses the structure éf) are determined fronf, the n body distribution function.
long wavelengths, but some structure is still present at shorfhe functionf,, can be thought of as a function in a higher
wavelengths. dimensional space. One can imagine this as having an analo-
These phenomena are all related to the internal structurgous higher dimensional emittaneg wheren is the dimen-
of system of charged particles and photons. In order to chasion of the space. In the case where we go to the
acterize these phenomena theoretically and to formulatéN-dimensionaly space the distribution function is a single
mathematically, we analyze the dynamics in termsgof point and the corresponding high dimensional emittance
space(six-dimensional phase spaandI’ space (&M di- €gn and, therefore, the higher-order entrdgy, in that space
mensional phase space, whéfeis the dimension of appro- is zero. As we go to lower and lower dimensional spaces the
priate degrees of freedom or “particles”We introduce corresponding emittance and higher-order entropy increase.
6M-dimensionall” space and its dynamics for the descrip- In six-dimensional phase spacg Gpace, where the equa-
tion of u-space internal dynamics. The volume reduction intions of motion are integrated ovelN6- 6, coordinates, we
phase space qgf space corresponds to the reduction of di-obtain the usual emittance and entropy. As we cool a charged
mensions of phase space Bfspace. Once we introdudé  particle beam consisting ofl particles the area i space
space, it is straightforward to introduce higher-order correlareduces. Correspondingly, the higher dimensional emittances
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and higher-order entropies also decrease. Essentially, coolirgeam and the method of kicking the beam given that a feed-
of aN particle system is pushing the single point distributionback system with high enough resolution of the phase space
function in the BN-dimensional space down to progressively of the beam is possible. We have not addressed the problem
lower dimensions. One can see that whey particle system of extracting the phase space information which in and of
is cooled to its limit the entire distribution looks like a single itself represents a formidable task. One of the problems is
point in six-dimensional phase spage §pace. that of the large bandwidttin our example in the text it is
The observation that more rapid cooling with more colorsabout 10 THZ28]), which requires excellent diagnostics and
(or degrees of freedonof illuminated laser may be termed computational techniques. Related to this problem is the ob-
as the greater change (specifig higher-order entropy per fuscation of the beam data arising from the incomplete un-
energy. In other words for a given change of enefy the  derstanding of accelerator structures. For simple manipula-
modulus of the change of the entro@s, is greater for tions of the beam phase space not involving cooling such as
greatem beam shaping or bunching where the resolution and feedback
constraints are greatly relaxed currently available techniques
such as tomographj29], or other methods can be used. In
our next paper we will address this problem by looking at
modern techniques of mapping the phase space distribution
for n>m, where S, was defined in Eq(7). Note that for  from the synchrotron radiation reconstructifis], time of
m=1 for the dynamical system with temperatdreve know  flight methodg11], and other recent progref26]. In addi-
the familiar result tion, we are developing feed-forward neural net prediction
algorithms, based ofi) the inversion from the phase space
‘9_51: E (61) momentg 17], (ii) the prediction of the observed beam fluc-
JE T’ tuations, andiii ) the inversion from the scattered laser light,
_ ) an approach similar to Ref27]. In the future we need to
i.e., the change in the one-bodysual or the lowest order inyestigate a more rigorouand orthogonaltreatment of the
entropy per energy is equal to the inverse temperature. Thghase space of photons. We then need to mathematically
is, a greater change in entropy per energy can be achieved {grmylate the observed phenomenon of entropy resonance,
a colder system; an intuitively reaspnable interpretation cafyhich is conceptually distinct from the conventional wave-
be rendered. A rigorous mathematical proof of E80) has  pariicle resonance. We further need to mathematically for-
been carried out by Wo[f25], in which a simple Ising model  yjate the “law of diminishing returns” in terms of higher-
was adopted. In this system it can be shown that order entropy. These tasks may be repended ones to build a
148, ( 1\ 45, foundation of structural statistical mechanics as opposed to

nE| " |mE | (60

19S, ’1 9Sm

- =l1-Z| =, (62  the conventional(thermodynamical statistical mechanics.

n JE n/ oE We envisage that further studies in cooling of charged par-
ticles beams via lasers will bring in not only a novel and,
perhaps, more efficient cooling technique, but also allow us
to learn the dynamics and needed mathematical tools to ana-
ze the internal structure df space for the manipulation of

e beam phase space.

where S;=lim,_ .(S,/n). Thus (1h)(dS,/JdE) is greater
for greatern in the Ising system. In Fig. 6 of our cooling
simulation when we employ a large humber of colors, i.e.,
large dimension in laser phase space, the cooling is rapid an
though the employed laser power may be considerable, the
expended laser energy summed over all colors is far smaller
than that needed for an individual laser light. We believe that
this is an observation of this principle, E@2).

In this paper we have introduced a general method for the This work was supported by JAERI and in part by the
phase space control of charged particle beams. We have cod-S. DOE. We would like Professor M. Date for his contin-
centrated on the properties of cooling a charged particleied support of this project.
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